summaryrefslogtreecommitdiff
path: root/src/reflect/scala/reflect/internal/Types.scala
blob: dc12ef93529a866a0090310d02ff811e60e4ec39 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala
package reflect
package internal

import scala.collection.{ mutable, immutable }
import scala.ref.WeakReference
import mutable.ListBuffer
import Flags._
import scala.util.control.ControlThrowable
import scala.annotation.tailrec
import util.Statistics
import util.ThreeValues._
import Variance._
import Depth._
import TypeConstants._

/* A standard type pattern match:
  case ErrorType =>
    // internal: error
  case WildcardType =>
    // internal: unknown
  case BoundedWildcardType(bounds) =>
    // internal: unknown
  case NoType =>
  case NoPrefix =>
  case ThisType(sym) =>
    // sym.this.type
  case SuperType(thistpe, supertpe) =>
    // super references
  case SingleType(pre, sym) =>
    // pre.sym.type
  case ConstantType(value) =>
    // Int(2)
  case TypeRef(pre, sym, args) =>
    // pre.sym[targs]
    // Outer.this.C would be represented as TypeRef(ThisType(Outer), C, List())
  case RefinedType(parents, defs) =>
    // parent1 with ... with parentn { defs }
  case ExistentialType(tparams, result) =>
    // result forSome { tparams }
  case AnnotatedType(annots, tp) =>
    // tp @annots

  // the following are non-value types; you cannot write them down in Scala source.

  case TypeBounds(lo, hi) =>
    // >: lo <: hi
  case ClassInfoType(parents, defs, clazz) =>
    // same as RefinedType except as body of class
  case MethodType(paramtypes, result) =>
    // (paramtypes)result
    // For instance def m(): T is represented as MethodType(List(), T)
  case NullaryMethodType(result) => // eliminated by uncurry
    // an eval-by-name type
    // For instance def m: T is represented as NullaryMethodType(T)
  case PolyType(tparams, result) =>
    // [tparams]result where result is a (Nullary)MethodType or ClassInfoType

  // The remaining types are not used after phase `typer`.
  case OverloadedType(pre, tparams, alts) =>
    // all alternatives of an overloaded ident
  case AntiPolyType(pre, targs) =>
    // rarely used, disappears when combined with a PolyType
  case TypeVar(inst, constr) =>
    // a type variable
    // Replace occurrences of type parameters with type vars, where
    // inst is the instantiation and constr is a list of bounds.
  case ErasedValueType(clazz, underlying)
    // only used during erasure of derived value classes.
*/

trait Types
  extends api.Types
  with tpe.TypeComparers
  with tpe.TypeToStrings
  with tpe.CommonOwners
  with tpe.GlbLubs
  with tpe.TypeMaps
  with tpe.TypeConstraints
  with tpe.FindMembers
  with util.Collections { self: SymbolTable =>

  import definitions._
  import TypesStats._

  private var explainSwitch = false
  private final val emptySymbolSet = immutable.Set.empty[Symbol]

  private final val breakCycles = settings.breakCycles.value
  /** In case anyone wants to turn on type parameter bounds being used
   *  to seed type constraints.
   */
  private final val propagateParameterBoundsToTypeVars = sys.props contains "scalac.debug.prop-constraints"
  private final val sharperSkolems = sys.props contains "scalac.experimental.sharper-skolems"

  /** Caching the most recent map has a 75-90% hit rate. */
  private object substTypeMapCache {
    private[this] var cached: SubstTypeMap = new SubstTypeMap(Nil, Nil)

    def apply(from: List[Symbol], to: List[Type]): SubstTypeMap = {
      if ((cached.from ne from) || (cached.to ne to))
        cached = new SubstTypeMap(from, to)

      cached
    }
  }

  /** The current skolemization level, needed for the algorithms
   *  in isSameType, isSubType that do constraint solving under a prefix.
   */
  private var _skolemizationLevel = 0
  def skolemizationLevel = _skolemizationLevel
  def skolemizationLevel_=(value: Int) = _skolemizationLevel = value

  /** A map from lists to compound types that have the given list as parents.
   *  This is used to avoid duplication in the computation of base type sequences and baseClasses.
   *  It makes use of the fact that these two operations depend only on the parents,
   *  not on the refinement.
   */
  private val _intersectionWitness = perRunCaches.newWeakMap[List[Type], WeakReference[Type]]()
  def intersectionWitness = _intersectionWitness

  /** A proxy for a type (identified by field `underlying`) that forwards most
   *  operations to it (for exceptions, see WrappingProxy, which forwards even more operations).
   *  every operation that is overridden for some kind of types should be forwarded.
   */
  trait SimpleTypeProxy extends Type {
    def underlying: Type

    // the following operations + those in RewrappingTypeProxy are all operations
    // in class Type that are overridden in some subclass
    // Important to keep this up-to-date when new operations are added!
    override def isTrivial = underlying.isTrivial
    override def isHigherKinded: Boolean = underlying.isHigherKinded
    override def typeConstructor: Type = underlying.typeConstructor
    override def isError = underlying.isError
    override def isErroneous = underlying.isErroneous
    override def paramSectionCount = underlying.paramSectionCount
    override def paramss = underlying.paramss
    override def params = underlying.params
    override def paramTypes = underlying.paramTypes
    override def termSymbol = underlying.termSymbol
    override def termSymbolDirect = underlying.termSymbolDirect
    override def typeParams = underlying.typeParams
    override def boundSyms = underlying.boundSyms
    override def typeSymbol = underlying.typeSymbol
    override def typeSymbolDirect = underlying.typeSymbolDirect
    override def widen = underlying.widen
    override def typeOfThis = underlying.typeOfThis
    override def bounds = underlying.bounds
    override def parents = underlying.parents
    override def prefix = underlying.prefix
    override def decls = underlying.decls
    override def baseType(clazz: Symbol) = underlying.baseType(clazz)
    override def baseTypeSeq = underlying.baseTypeSeq
    override def baseTypeSeqDepth = underlying.baseTypeSeqDepth
    override def baseClasses = underlying.baseClasses
  }

  /** A proxy for a type (identified by field `underlying`) that forwards most
   *  operations to it. Every operation that is overridden for some kind of types is
   *  forwarded here. Some operations are rewrapped again.
   */
  trait RewrappingTypeProxy extends SimpleTypeProxy {
    protected def maybeRewrap(newtp: Type) = (
      if (newtp eq underlying) this
      else {
        // - BoundedWildcardTypes reach here during erroneous compilation: neg/t6258
        // - Higher-kinded exclusion is because [x]CC[x] compares =:= to CC: pos/t3800
        // - Avoid reusing the existing Wrapped(RefinedType) when we've be asked to wrap an =:= RefinementTypeRef, the
        //   distinction is important in base type sequences. See TypesTest.testExistentialRefinement
        // - Otherwise, if newtp =:= underlying, don't rewrap it.
        val hasSpecialMeaningBeyond_=:= = newtp.isWildcard || newtp.isHigherKinded || newtp.isInstanceOf[RefinementTypeRef]
        if (!hasSpecialMeaningBeyond_=:= && (newtp =:= underlying)) this
        else rewrap(newtp)
      }
    )
    protected def rewrap(newtp: Type): Type

    // the following are all operations in class Type that are overridden in some subclass
    // Important to keep this up-to-date when new operations are added!
    override def widen = maybeRewrap(underlying.widen)
    override def narrow = underlying.narrow
    override def deconst = maybeRewrap(underlying.deconst)
    override def resultType = maybeRewrap(underlying.resultType)
    override def resultType(actuals: List[Type]) = maybeRewrap(underlying.resultType(actuals))
    override def paramSectionCount = 0
    override def paramss: List[List[Symbol]] = List()
    override def params: List[Symbol] = List()
    override def paramTypes: List[Type] = List()
    override def typeArgs = underlying.typeArgs
    override def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]) = underlying.instantiateTypeParams(formals, actuals)
    override def skolemizeExistential(owner: Symbol, origin: AnyRef) = underlying.skolemizeExistential(owner, origin)
    override def normalize = maybeRewrap(underlying.normalize)
    override def etaExpand = maybeRewrap(underlying.etaExpand)
    override def dealias = maybeRewrap(underlying.dealias)
    override def cloneInfo(owner: Symbol) = maybeRewrap(underlying.cloneInfo(owner))
    override def atOwner(owner: Symbol) = maybeRewrap(underlying.atOwner(owner))
    override def prefixString = underlying.prefixString
    override def isComplete = underlying.isComplete
    override def complete(sym: Symbol) = underlying.complete(sym)
    override def load(sym: Symbol) { underlying.load(sym) }
    override def withAnnotations(annots: List[AnnotationInfo]) = maybeRewrap(underlying.withAnnotations(annots))
    override def withoutAnnotations = maybeRewrap(underlying.withoutAnnotations)
  }

  case object UnmappableTree extends TermTree {
    override def toString = "<unmappable>"
    super.setType(NoType)
    override def tpe_=(t: Type) = if (t != NoType) {
      throw new UnsupportedOperationException("tpe_=("+t+") inapplicable for <empty>")
    }
  }

  abstract class TypeApiImpl extends TypeApi { this: Type =>
    def declaration(name: Name): Symbol = decl(name)
    def declarations = decls
    def typeArguments = typeArgs
    def erasure = this match {
      case ConstantType(value) => widen.erasure
      case _ =>
        var result: Type = transformedType(this)
        result = result.normalize match { // necessary to deal with erasures of HK types, typeConstructor won't work
          case PolyType(undets, underlying) => existentialAbstraction(undets, underlying) // we don't want undets in the result
          case _ => result
        }
        // erasure screws up all ThisTypes for modules into PackageTypeRefs
        // we need to unscrew them, or certain typechecks will fail mysteriously
        // http://groups.google.com/group/scala-internals/browse_thread/thread/6d3277ae21b6d581
        result = result.map(tpe => tpe match {
          case tpe: PackageTypeRef => ThisType(tpe.sym)
          case _ => tpe
        })
        result
    }
    def substituteSymbols(from: List[Symbol], to: List[Symbol]): Type = substSym(from, to)
    def substituteTypes(from: List[Symbol], to: List[Type]): Type = subst(from, to)

    // the only thingies that we want to splice are: 1) type parameters, 2) abstract type members
    // the thingies that we don't want to splice are: 1) concrete types (obviously), 2) existential skolems
    def isSpliceable = {
      this.isInstanceOf[TypeRef] && typeSymbol.isAbstractType && !typeSymbol.isExistential
    }

    def companion = {
      val sym = typeSymbolDirect
      if (sym.isModule && !sym.hasPackageFlag) sym.companionSymbol.tpe
      else if (sym.isModuleClass && !sym.isPackageClass) sym.sourceModule.companionSymbol.tpe
      else if (sym.isClass && !sym.isModuleClass && !sym.isPackageClass) sym.companionSymbol.info
      else NoType
    }

    def paramLists: List[List[Symbol]] = paramss
  }

  /** The base class for all types */
  abstract class Type extends TypeApiImpl with Annotatable[Type] {
    /** Types for which asSeenFrom always is the identity, no matter what
     *  prefix or owner.
     */
    def isTrivial: Boolean = false

    /** Is this type higher-kinded, i.e., is it a type constructor @M */
    def isHigherKinded: Boolean = false
    def takesTypeArgs: Boolean = this.isHigherKinded

    /** Does this type denote a stable reference (i.e. singleton type)? */
    final def isStable: Boolean = definitions isStable this

    /** Is this type dangerous (i.e. it might contain conflicting
     *  type information when empty, so that it can be constructed
     *  so that type unsoundness results.) A dangerous type has an underlying
     *  type of the form T_1 with T_n { decls }, where one of the
     *  T_i (i > 1) is an abstract type.
     */
    final def isVolatile: Boolean = definitions isVolatile this

    /** Is this type a structural refinement type (it ''refines'' members that have not been inherited) */
    def isStructuralRefinement: Boolean = false

    /** Does this type depend immediately on an enclosing method parameter?
      * I.e., is it a singleton type whose termSymbol refers to an argument of the symbol's owner (which is a method)?
      */
    def isImmediatelyDependent: Boolean = false

    /** Is this type a dependent method type? */
    def isDependentMethodType: Boolean = false

    /** True for WildcardType or BoundedWildcardType. */
    def isWildcard = false

    /** Is this type produced as a repair for an error? */
    def isError: Boolean = typeSymbol.isError || termSymbol.isError

    /** Is this type produced as a repair for an error? */
    def isErroneous: Boolean = ErroneousCollector.collect(this)

    /** Can this type only be subtyped by bottom types?
     *  This is assessed to be the case if the class is final,
     *  and all type parameters (if any) are invariant.
     */
    def isFinalType = typeSymbol.hasOnlyBottomSubclasses && prefix.isStable

    /** Is this type completed (i.e. not a lazy type)? */
    def isComplete: Boolean = true

    /** Should this be printed as an infix type (@showAsInfix class &&[T, U])? */
    def isShowAsInfixType: Boolean = false

    /** If this is a lazy type, assign a new type to `sym`. */
    def complete(sym: Symbol) {}

    /** If this is a lazy type corresponding to a subclass add it to its
     *  parents children
     */
    def forceDirectSuperclasses: Unit = ()

    /** The term symbol associated with the type
      * Note that the symbol of the normalized type is returned (@see normalize)
      */
    def termSymbol: Symbol = NoSymbol

    /** The type symbol associated with the type
      * Note that the symbol of the normalized type is returned (@see normalize)
      * A type's typeSymbol should if possible not be inspected directly, due to
      * the likelihood that what is true for tp.typeSymbol is not true for
      * tp.sym, due to normalization.
      */
    def typeSymbol: Symbol = NoSymbol

    /** The term symbol ''directly'' associated with the type.
     */
    def termSymbolDirect: Symbol = termSymbol

    /** The type symbol ''directly'' associated with the type.
     *  In other words, no normalization is performed: if this is an alias type,
     *  the symbol returned is that of the alias, not the underlying type.
     */
    def typeSymbolDirect: Symbol = typeSymbol

    /** The base type underlying a type proxy, identity on all other types */
    def underlying: Type = this

    /** Widen from singleton type to its underlying non-singleton
     *  base type by applying one or more `underlying` dereferences,
     *  identity for all other types.
     *
     *  class Outer { class C ; val x: C }
     *  val o: Outer
     *  <o.x.type>.widen = o.C
     */
    def widen: Type = this

    /** Map a constant type or not-null-type to its underlying base type,
     *  identity for all other types.
     */
    def deconst: Type = this

    /** The type of `this` of a class type or reference type. */
    def typeOfThis: Type = typeSymbol.typeOfThis

    /** Map to a singleton type which is a subtype of this type.
     *  The fallback implemented here gives
     *    T.narrow  = T' forSome { type T' <: T with Singleton }
     *  Overridden where we know more about where types come from.
     */
    /*
    Note: this implementation of narrow is theoretically superior to the one
    in use below, but imposed a significant performance penalty.  It was in trunk
    from svn r24960 through r25080.
    */
    /*
    def narrow: Type =
      if (phase.erasedTypes) this
      else commonOwner(this) freshExistential ".type" setInfo singletonBounds(this) tpe
    */

    /** Map to a singleton type which is a subtype of this type.
     *  The fallback implemented here gives:
     *  {{{
     *    T.narrow  =  (T {}).this.type
     *  }}}
     *  Overridden where we know more about where types come from.
     */
    def narrow: Type =
      if (phase.erasedTypes) this
      else {
        val cowner = commonOwner(this)
        refinedType(this :: Nil, cowner, EmptyScope, cowner.pos).narrow
      }

    /** For a TypeBounds type, itself;
     *  for a reference denoting an abstract type, its bounds,
     *  for all other types, a TypeBounds type all of whose bounds are this type.
     */
    def bounds: TypeBounds = TypeBounds(this, this)

    /** For a class or intersection type, its parents.
     *  For a TypeBounds type, the parents of its hi bound.
     *  inherited by typerefs, singleton types, and refinement types,
     *  The empty list for all other types */
    def parents: List[Type] = List()

    /** For a class with nonEmpty parents, the first parent.
     *  Otherwise some specific fixed top type.
     */
    def firstParent = if (parents.nonEmpty) parents.head else ObjectTpe

    /** For a typeref or single-type, the prefix of the normalized type (@see normalize).
     *  NoType for all other types. */
    def prefix: Type = NoType

    /** A chain of all typeref or singletype prefixes of this type, longest first.
     *  (Only used from safeToString.)
     */
    def prefixChain: List[Type] = this match {
      case TypeRef(pre, _, _) => pre :: pre.prefixChain
      case SingleType(pre, _) => pre :: pre.prefixChain
      case _ => List()
    }

    /** This type, without its type arguments @M */
    def typeConstructor: Type = this

    /** For a typeref, its arguments. The empty list for all other types */
    def typeArgs: List[Type] = List()

    /** A list of placeholder types derived from the type parameters.
     *  Used by RefinedType and TypeRef.
     */
    protected def dummyArgs: List[Type] = typeParams map (_.typeConstructor)

    /** For a (nullary) method or poly type, its direct result type,
     *  the type itself for all other types. */
    def resultType: Type = this

    def resultType(actuals: List[Type]) = this

    /** Only used for dependent method types. */
    def resultApprox: Type = ApproximateDependentMap(resultType)

    /** For a curried/nullary method or poly type its non-method result type,
     *  the type itself for all other types */
    final def finalResultType: Type = definitions finalResultType this

    /** For a method type, the number of its value parameter sections,
     *  0 for all other types */
    def paramSectionCount: Int = 0

    /** For a method or poly type, a list of its value parameter sections,
     *  the empty list for all other types */
    def paramss: List[List[Symbol]] = List()

    /** For a method or poly type, its first value parameter section,
     *  the empty list for all other types */
    def params: List[Symbol] = List()

    /** For a method or poly type, the types of its first value parameter section,
     *  the empty list for all other types */
    def paramTypes: List[Type] = List()

    /** For a (potentially wrapped) poly type, its type parameters,
     *  the empty list for all other types */
    def typeParams: List[Symbol] = List()

    /** For a (potentially wrapped) poly or existential type, its bound symbols,
     *  the empty list for all other types */
    def boundSyms: immutable.Set[Symbol] = emptySymbolSet

    /** Replace formal type parameter symbols with actual type arguments. ErrorType on arity mismatch.
     *
     * Amounts to substitution except for higher-kinded types. (See overridden method in TypeRef) -- @M
     */
    def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]): Type =
      if (sameLength(formals, actuals)) this.subst(formals, actuals) else ErrorType

    /** If this type is an existential, turn all existentially bound variables to type skolems.
     *  @param  owner    The owner of the created type skolems
     *  @param  origin   The tree whose type was an existential for which the skolem was created.
     */
    def skolemizeExistential(owner: Symbol, origin: AnyRef): Type = this

    /** A simple version of skolemizeExistential for situations where
     *  owner or unpack location do not matter (typically used in subtype tests)
     */
    def skolemizeExistential: Type = skolemizeExistential(NoSymbol, null)

    /** Reduce to beta eta-long normal form.
     *  Expands type aliases and converts higher-kinded TypeRefs to PolyTypes.
     *  Functions on types are also implemented as PolyTypes.
     *
     *  Example: (in the below, `<List>` is the type constructor of List)
     *    TypeRef(pre, `<List>`, List()) is replaced by
     *    PolyType(X, TypeRef(pre, `<List>`, List(X)))
     *
     *  Discussion: normalize is NOT usually what you want to be calling.
     *  The (very real) danger with normalize is that it will force types
     *  which would not otherwise have been forced, leading to mysterious
     *  behavioral differences, cycles, and other elements of mysteries.
     *  Under most conditions the method you should be calling is `dealiasWiden`
     *  (see that method for more info.)
     *
     *  Here are a few of the side-effect-trail-leaving methods called
     *  by various implementations of normalize:
     *
     *   - sym.info
     *   - tpe.etaExpand
     *   - tpe.betaReduce
     *   - tpe.memberType
     *   - sym.nextOverriddenSymbol
     *   - constraint.inst
     *
     *  If you've been around the compiler a while that list must fill
     *  your heart with fear.
     */
    def normalize = this // @MAT

    def etaExpand = this

    /** Expands type aliases. */
    def dealias = this

    /** Repeatedly apply widen and dealias until they have no effect.
     *  This compensates for the fact that type aliases can hide beneath
     *  singleton types and singleton types can hide inside type aliases.
     *  !!! - and yet it is still inadequate, because aliases and singletons
     *  might lurk in the upper bounds of an abstract type. See SI-7051.
     */
    def dealiasWiden: Type = (
      if (this ne widen) widen.dealiasWiden
      else if (this ne dealias) dealias.dealiasWiden
      else this
    )

    /** All the types encountered in the course of dealiasing/widening,
     *  including each intermediate beta reduction step (whereas calling
     *  dealias applies as many as possible.)
     */
    def dealiasWidenChain: List[Type] = this :: (
      if (this ne widen) widen.dealiasWidenChain
      else if (this ne betaReduce) betaReduce.dealiasWidenChain
      else Nil
    )

    /** Performs a single step of beta-reduction on types.
     *  Given:
     *
     *    type C[T] = B[T]
     *    type B[T] = A
     *    class A
     *
     *  The following will happen after `betaReduce` is invoked:
     *    TypeRef(pre, <C>, List(Int)) is replaced by
     *    TypeRef(pre, <B>, List(Int))
     *
     *  Unlike `dealias`, which recursively applies beta reduction, until it's stuck,
     *  `betaReduce` performs exactly one step and then returns.
     */
    def betaReduce: Type = this

    /** For a classtype or refined type, its defined or declared members;
     *  inherited by subtypes and typerefs.
     *  The empty scope for all other types.
     */
    def decls: Scope = EmptyScope

    /** The defined or declared members with name `name` in this type;
     *  an OverloadedSymbol if several exist, NoSymbol if none exist.
     *  Alternatives of overloaded symbol appear in the order they are declared.
     */
    def decl(name: Name): Symbol = findDecl(name, 0)

    /** A list of all non-private members defined or declared in this type. */
    def nonPrivateDecls: List[Symbol] = decls.filterNot(_.isPrivate).toList

    /** The non-private defined or declared members with name `name` in this type;
     *  an OverloadedSymbol if several exist, NoSymbol if none exist.
     *  Alternatives of overloaded symbol appear in the order they are declared.
     */
    def nonPrivateDecl(name: Name): Symbol = findDecl(name, PRIVATE)

    /** A list of all members of this type (defined or inherited)
     *  Members appear in linearization order of their owners.
     *  Members with the same owner appear in reverse order of their declarations.
     */
    def members: Scope = membersBasedOnFlags(0, 0)

    /** A list of all non-private members of this type (defined or inherited) */
    def nonPrivateMembers: Scope = membersBasedOnFlags(BridgeAndPrivateFlags, 0)

    /** A list of all non-private members of this type  (defined or inherited),
     *  admitting members with given flags `admit`
     */
    def nonPrivateMembersAdmitting(admit: Long): Scope = membersBasedOnFlags(BridgeAndPrivateFlags & ~admit, 0)

    /** A list of all implicit symbols of this type  (defined or inherited) */
    def implicitMembers: Scope = {
      typeSymbolDirect match {
        case sym: ModuleClassSymbol => sym.implicitMembers
        case _ => membersBasedOnFlags(BridgeFlags, IMPLICIT)
      }
    }

    /** A list of all deferred symbols of this type  (defined or inherited) */
    def deferredMembers: Scope = membersBasedOnFlags(BridgeFlags, DEFERRED)

    /** The member with given name,
     *  an OverloadedSymbol if several exist, NoSymbol if none exist */
    def member(name: Name): Symbol =
      memberBasedOnName(name, BridgeFlags)

    /** The non-private member with given name,
     *  an OverloadedSymbol if several exist, NoSymbol if none exist.
     *  Bridges are excluded from the result
     */
    def nonPrivateMember(name: Name): Symbol =
      memberBasedOnName(name, BridgeAndPrivateFlags)

    def packageObject: Symbol = member(nme.PACKAGE)

    /** The non-private member with given name, admitting members with given flags `admit`.
     *  "Admitting" refers to the fact that members with a PRIVATE, BRIDGE, or VBRIDGE
     *  flag are usually excluded from findMember results, but supplying any of those flags
     *  to this method disables that exclusion.
     *
     *  An OverloadedSymbol if several exist, NoSymbol if none exists.
     */
    def nonPrivateMemberAdmitting(name: Name, admit: Long): Symbol =
      memberBasedOnName(name, BridgeAndPrivateFlags & ~admit)

    /** The non-local member with given name,
     *  an OverloadedSymbol if several exist, NoSymbol if none exist */
    def nonLocalMember(name: Name): Symbol =
      memberBasedOnName(name, BridgeFlags | LOCAL)

    /** Members excluding and requiring the given flags.
     *  Note: unfortunately it doesn't work to exclude DEFERRED this way.
     */
    def membersBasedOnFlags(excludedFlags: Long, requiredFlags: Long): Scope =
      findMembers(excludedFlags, requiredFlags)

    def memberBasedOnName(name: Name, excludedFlags: Long): Symbol =
      findMember(name, excludedFlags, 0, stableOnly = false)

    /** The least type instance of given class which is a supertype
     *  of this type.  Example:
     *    class D[T]
     *    class C extends p.D[Int]
     *    ThisType(C).baseType(D) = p.D[Int]
     */
    def baseType(clazz: Symbol): Type = NoType

    /** This type as seen from prefix `pre` and class `clazz`. This means:
     *  Replace all thistypes of `clazz` or one of its subclasses
     *  by `pre` and instantiate all parameters by arguments of `pre`.
     *  Proceed analogously for thistypes referring to outer classes.
     *
     *  Example:
     *    class D[T] { def m: T }
     *    class C extends p.D[Int]
     *    T.asSeenFrom(ThisType(C), D)  (where D is owner of m)
     *      = Int
     */
    def asSeenFrom(pre: Type, clazz: Symbol): Type = {
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, asSeenFromNanos)  else null
      try {
        val trivial = (
             this.isTrivial
          || phase.erasedTypes && pre.typeSymbol != ArrayClass
          || skipPrefixOf(pre, clazz)
        )
        if (trivial) this
        else {
          val m     = new AsSeenFromMap(pre.normalize, clazz)
          val tp    = m(this)
          val tp1   = existentialAbstraction(m.capturedParams, tp)

          if (m.capturedSkolems.isEmpty) tp1
          else deriveType(m.capturedSkolems, _.cloneSymbol setFlag CAPTURED)(tp1)
        }
      } finally if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
    }

    /** The info of `sym`, seen as a member of this type.
     *
     *  Example:
     *  {{{
     *    class D[T] { def m: T }
     *    class C extends p.D[Int]
     *    ThisType(C).memberType(m) = Int
     *  }}}
     */
    def memberInfo(sym: Symbol): Type = {
//      assert(sym ne NoSymbol, this)
      sym.info.asSeenFrom(this, sym.owner)
    }

    /** The type of `sym`, seen as a member of this type. */
    def memberType(sym: Symbol): Type = sym.tpeHK match {
      case OverloadedType(_, alts) => OverloadedType(this, alts)
      case tp =>
        // Correct caching is nearly impossible because `sym.tpeHK.asSeenFrom(pre, sym.owner)`
        // may have different results even for reference-identical `sym.tpeHK` and `pre` (even in the same period).
        // For example, `pre` could be a `ThisType`. For such a type, `tpThen eq tpNow` does not imply
        // `tpThen` and `tpNow` mean the same thing, because `tpThen.typeSymbol.info` could have been different
        // from what it is now, and the cache won't know simply by looking at `pre`.
        if (sym eq NoSymbol) NoType
        else tp.asSeenFrom(this, sym.owner)
    }

    /** Substitute types `to` for occurrences of references to
     *  symbols `from` in this type.
     */
    def subst(from: List[Symbol], to: List[Type]): Type =
      if (from.isEmpty) this else substTypeMapCache(from, to)(this)

    /** Substitute symbols `to` for occurrences of symbols `from` in this type.
     *
     * !!! NOTE !!!: If you need to do a substThis and a substSym, the substThis has to come
     * first, as otherwise symbols will immediately get rebound in typeRef to the old
     * symbol.
     */
    def substSym(from: List[Symbol], to: List[Symbol]): Type =
      if ((from eq to) || from.isEmpty) this
      else new SubstSymMap(from, to) apply this

    /** Substitute all occurrences of `ThisType(from)` in this type by `to`.
     *
     * !!! NOTE !!!: If you need to do a substThis and a substSym, the substThis has to come
     * first, as otherwise symbols will immediately get rebound in typeRef to the old
     * symbol.
     */
    def substThis(from: Symbol, to: Type): Type =
      new SubstThisMap(from, to) apply this
    def substThis(from: Symbol, to: Symbol): Type =
      substThis(from, to.thisType)

    /** Performs both substThis and substSym, in that order.
     *
     * [JZ] Reverted `SubstThisAndSymMap` from 334872, which was not the same as
     * `substThis(from, to).substSym(symsFrom, symsTo)`.
     *
     * `SubstThisAndSymMap` performs a breadth-first map over this type, which meant that
     * symbol substitution occurred before `ThisType` substitution. Consequently, in substitution
     * of a `SingleType(ThisType(from), sym)`, symbols were rebound to `from` rather than `to`.
     */
    def substThisAndSym(from: Symbol, to: Type, symsFrom: List[Symbol], symsTo: List[Symbol]): Type =
      if (symsFrom eq symsTo) substThis(from, to)
      else substThis(from, to).substSym(symsFrom, symsTo)

    /** Returns all parts of this type which satisfy predicate `p` */
    def withFilter(p: Type => Boolean) = new FilterMapForeach(p)

    class FilterMapForeach(p: Type => Boolean) extends FilterTypeCollector(p){
      def foreach[U](f: Type => U): Unit = collect(Type.this) foreach f
      def map[T](f: Type => T): List[T]  = collect(Type.this) map f
    }

    @inline final def orElse(alt: => Type): Type = if (this ne NoType) this else alt

    /** Returns optionally first type (in a preorder traversal) which satisfies predicate `p`,
     *  or None if none exists.
     */
    def find(p: Type => Boolean): Option[Type] = new FindTypeCollector(p).collect(this)

    /** Apply `f` to each part of this type */
    def foreach(f: Type => Unit) { new ForEachTypeTraverser(f).traverse(this) }

    /** Apply `pf` to each part of this type on which the function is defined */
    def collect[T](pf: PartialFunction[Type, T]): List[T] = new CollectTypeCollector(pf).collect(this)

    /** Apply `f` to each part of this type; children get mapped before their parents */
    def map(f: Type => Type): Type = new TypeMap {
      def apply(x: Type) = f(mapOver(x))
    } apply this

    /** Is there part of this type which satisfies predicate `p`? */
    def exists(p: Type => Boolean): Boolean = !find(p).isEmpty

    /** Does this type contain a reference to this symbol? */
    def contains(sym: Symbol): Boolean = new ContainsCollector(sym).collect(this)

    /** Is this type a subtype of that type? */
    def <:<(that: Type): Boolean = {
      if (Statistics.canEnable) stat_<:<(that)
      else {
        (this eq that) ||
        (if (explainSwitch) explain("<:", isSubType(_: Type, _: Type), this, that)
         else isSubType(this, that))
      }
    }

    /** Is this type a subtype of that type in a pattern context?
     *  Dummy type arguments on the right hand side are replaced with
     *  fresh existentials, except for Arrays.
     *
     *  See bug1434.scala for an example of code which would fail
     *  if only a <:< test were applied.
     */
    def matchesPattern(that: Type): Boolean = (this <:< that) || (that match {
      case ArrayTypeRef(elem2) if elem2.typeConstructor.isHigherKinded =>
        this match {
          case ArrayTypeRef(elem1) => elem1 matchesPattern elem2
          case _                   => false
        }
      case TypeRef(_, sym, args) =>
        val that1 = existentialAbstraction(args map (_.typeSymbol), that)
        (that ne that1) && (this <:< that1) && {
          debuglog(s"$this.matchesPattern($that) depended on discarding args and testing <:< $that1")
          true
        }
      case _ =>
        false
    })

    def stat_<:<(that: Type): Boolean = {
      if (Statistics.canEnable) Statistics.incCounter(subtypeCount)
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, subtypeNanos) else null
      val result =
        (this eq that) ||
        (if (explainSwitch) explain("<:", isSubType(_: Type, _: Type), this, that)
         else isSubType(this, that))
      if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
      result
    }

    /** Is this type a weak subtype of that type? True also for numeric types, i.e. Int weak_<:< Long.
     */
    def weak_<:<(that: Type): Boolean = {
      if (Statistics.canEnable) Statistics.incCounter(subtypeCount)
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, subtypeNanos) else null
      val result =
        ((this eq that) ||
         (if (explainSwitch) explain("weak_<:", isWeakSubType, this, that)
          else isWeakSubType(this, that)))
      if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
      result
    }

    /** Is this type equivalent to that type? */
    def =:=(that: Type): Boolean = (
      (this eq that) ||
      (if (explainSwitch) explain("=", isSameType, this, that)
       else isSameType(this, that))
    )

    /** Is this type close enough to that type so that members
     *  with the two type would override each other?
     *  This means:
     *    - Either both types are polytypes with the same number of
     *      type parameters and their result types match after renaming
     *      corresponding type parameters
     *    - Or both types are (nullary) method types with equivalent type parameter types
     *      and matching result types
     *    - Or both types are equivalent
     *    - Or phase.erasedTypes is false and both types are neither method nor
     *      poly types.
     */
    def matches(that: Type): Boolean = matchesType(this, that, !phase.erasedTypes)

    /** Same as matches, except that non-method types are always assumed to match. */
    def looselyMatches(that: Type): Boolean = matchesType(this, that, alwaysMatchSimple = true)

    /** The shortest sorted upwards closed array of types that contains
     *  this type as first element.
     *
     *  A list or array of types ts is upwards closed if
     *
     *    for all t in ts:
     *      for all typerefs p.s[args] such that t <: p.s[args]
     *      there exists a typeref p'.s[args'] in ts such that
     *      t <: p'.s['args] <: p.s[args],
     *
     *      and
     *
     *      for all singleton types p.s such that t <: p.s
     *      there exists a singleton type p'.s in ts such that
     *      t <: p'.s <: p.s
     *
     *  Sorting is with respect to Symbol.isLess() on type symbols.
     */
    def baseTypeSeq: BaseTypeSeq = baseTypeSingletonSeq(this)

    /** The maximum depth (@see typeDepth)
     *  of each type in the BaseTypeSeq of this type except the first.
     */
    def baseTypeSeqDepth: Depth = Depth(1)

    /** The list of all baseclasses of this type (including its own typeSymbol)
     *  in linearization order, starting with the class itself and ending
     *  in class Any.
     */
    def baseClasses: List[Symbol] = List()

    /**
     *  @param sym the class symbol
     *  @return    the index of given class symbol in the BaseTypeSeq of this type,
     *             or -1 if no base type with given class symbol exists.
     */
    def baseTypeIndex(sym: Symbol): Int = {
      val bts = baseTypeSeq
      var lo = 0
      var hi = bts.length - 1
      while (lo <= hi) {
        val mid = (lo + hi) / 2
        val btssym = bts.typeSymbol(mid)
        if (sym == btssym) return mid
        else if (sym isLess btssym) hi = mid - 1
        else if (btssym isLess sym) lo = mid + 1
        else abort("sym is neither `sym == btssym`, `sym isLess btssym` nor `btssym isLess sym`")
      }
      -1
    }

    /** If this is a ExistentialType, PolyType or MethodType, a copy with cloned type / value parameters
     *  owned by `owner`. Identity for all other types.
     */
    def cloneInfo(owner: Symbol) = this

    /** Make sure this type is correct as the info of given owner; clone it if not. */
    def atOwner(owner: Symbol) = this

    protected def objectPrefix = "object "
    protected def packagePrefix = "package "
    def trimPrefix(str: String) = str stripPrefix objectPrefix stripPrefix packagePrefix

    /** The string representation of this type used as a prefix */
    def prefixString = trimPrefix(toString) + "#"

   /** Convert toString avoiding infinite recursions by cutting off
     *  after `maxToStringRecursions` recursion levels. Uses `safeToString`
     *  to produce a string on each level.
     */
    override final def toString: String = {
      // see comments to internal#Symbol.typeSignature for an explanation why this initializes
      if (!isCompilerUniverse) fullyInitializeType(this)
      typeToString(this)
    }

    /** Method to be implemented in subclasses.
     *  Converts this type to a string in calling toString for its parts.
     */
    def safeToString: String = super.toString

    /** The string representation of this type, with singletypes explained. */
    def toLongString = {
      val str = toString
      if (str == "type") widen.toString
      else if ((str endsWith ".type") && !typeSymbol.isModuleClass)
        widen match {
          case RefinedType(_, _)                      => "" + widen
          case _                                      =>
            if (widen.toString.trim == "") str
            else s"$str (with underlying type $widen)"
        }
      else str
    }

    /** The string representation of this type when the direct object in a sentence.
     *  Normally this is no different from the regular representation, but modules
     *  read better as "object Foo" here and "Foo.type" the rest of the time.
     */
    def directObjectString = safeToString

    def nameAndArgsString = typeSymbol.name.toString

    /** A test whether a type contains any unification type variables.
     *  Overridden with custom logic except where trivially true.
     */
    def isGround: Boolean = this match {
      case ThisType(_) | NoPrefix | WildcardType | NoType | ErrorType | ConstantType(_) =>
        true
      case _ =>
        typeVarToOriginMap(this) eq this
    }

    /** If this is a symbol loader type, load and assign a new type to `sym`. */
    def load(sym: Symbol) {}

    private def findDecl(name: Name, excludedFlags: Int): Symbol = {
      var alts: List[Symbol] = List()
      var sym: Symbol = NoSymbol
      var e: ScopeEntry = decls.lookupEntry(name)
      while (e ne null) {
        if (!e.sym.hasFlag(excludedFlags.toLong)) {
          if (sym == NoSymbol) sym = e.sym
          else {
            if (alts.isEmpty) alts = sym :: Nil
            alts = e.sym :: alts
          }
        }
        e = decls.lookupNextEntry(e)
      }
      if (alts.isEmpty) sym
      else (baseClasses.head.newOverloaded(this, alts))
    }

    /** Find all members meeting the flag requirements.
     *
     * If you require a DEFERRED member, you will get it if it exists -- even if there's an overriding concrete member.
     * If you exclude DEFERRED members, or don't specify any requirements,
     *    you won't get deferred members (whether they have an overriding concrete member or not)
     *
     * Thus, findMember requiring DEFERRED flags yields deferred members,
     * while `findMember(excludedFlags = 0, requiredFlags = 0).filter(_.isDeferred)` may not (if there's a corresponding concrete member)
     *
     * Requirements take precedence over exclusions, so requiring and excluding DEFERRED will yield a DEFERRED member (if there is one).
     *
     */
    def findMembers(excludedFlags: Long, requiredFlags: Long): Scope = {
      def findMembersInternal = new FindMembers(this, excludedFlags, requiredFlags).apply()
      if (this.isGround) findMembersInternal
      else suspendingTypeVars(typeVarsInType(this))(findMembersInternal)
    }

    /**
     *  Find member(s) in this type. If several members matching criteria are found, they are
     *  returned in an OverloadedSymbol
     *
     *  @param name           The member's name
     *  @param excludedFlags  Returned members do not have these flags
     *  @param requiredFlags  Returned members do have these flags
     *  @param stableOnly     If set, return only members that are types or stable values
     */
    def findMember(name: Name, excludedFlags: Long, requiredFlags: Long, stableOnly: Boolean): Symbol = {
      def findMemberInternal = new FindMember(this, name, excludedFlags, requiredFlags, stableOnly).apply()

      if (this.isGround) findMemberInternal
      else suspendingTypeVars(typeVarsInType(this))(findMemberInternal)
    }

    /** The (existential or otherwise) skolems and existentially quantified variables which are free in this type */
    def skolemsExceptMethodTypeParams: List[Symbol] = {
      var boundSyms: List[Symbol] = List()
      var skolems: List[Symbol] = List()
      for (t <- this) {
        t match {
          case ExistentialType(quantified, qtpe) =>
            boundSyms = boundSyms ::: quantified
          case TypeRef(_, sym, _) =>
            if ((sym.isExistentialSkolem || sym.isGADTSkolem) && // treat GADT skolems like existential skolems
                !((boundSyms contains sym) || (skolems contains sym)))
              skolems = sym :: skolems
          case _ =>
        }
      }
      skolems
    }

    // Implementation of Annotatable for all types but AnnotatedType, which
    // overrides these.
    def annotations: List[AnnotationInfo] = Nil
    def withoutAnnotations: Type = this
    def filterAnnotations(p: AnnotationInfo => Boolean): Type = this
    def setAnnotations(annots: List[AnnotationInfo]): Type  = annotatedType(annots, this)
    def withAnnotations(annots: List[AnnotationInfo]): Type = annotatedType(annots, this)

    /** The kind of this type; used for debugging */
    def kind: String = "unknown type of class "+getClass()
  }

// Subclasses ------------------------------------------------------------

  /**
   *  A type that can be passed to unique(..) and be stored in the uniques map.
   */
  abstract class UniqueType extends Type with Product {
    final override val hashCode = computeHashCode
    protected def computeHashCode = scala.runtime.ScalaRunTime._hashCode(this)
  }

 /** A base class for types that defer some operations
   *  to their immediate supertype.
   */
  abstract class SubType extends UniqueType {
    def supertype: Type
    override def parents: List[Type] = supertype.parents
    override def decls: Scope = supertype.decls
    override def baseType(clazz: Symbol): Type = supertype.baseType(clazz)
    override def baseTypeSeq: BaseTypeSeq = supertype.baseTypeSeq
    override def baseTypeSeqDepth: Depth = supertype.baseTypeSeqDepth
    override def baseClasses: List[Symbol] = supertype.baseClasses
  }

  /** A base class for types that represent a single value
   *  (single-types and this-types).
   */
  abstract class SingletonType extends SubType with SimpleTypeProxy with SingletonTypeApi {
    def supertype = underlying
    override def isTrivial = false
    override def widen: Type = underlying.widen
    override def baseTypeSeq: BaseTypeSeq = {
      if (Statistics.canEnable) Statistics.incCounter(singletonBaseTypeSeqCount)
      underlying.baseTypeSeq prepend this
    }
    override def isHigherKinded = false // singleton type classifies objects, thus must be kind *
    override def safeToString: String = {
      // Avoiding printing Predef.type and scala.package.type as "type",
      // since in all other cases we omit those prefixes.
      val pre = underlying.typeSymbol.skipPackageObject
      if (pre.isOmittablePrefix) pre.fullName + ".type"
      else prefixString + "type"
    }
/*
    override def typeOfThis: Type = typeSymbol.typeOfThis
    override def bounds: TypeBounds = TypeBounds(this, this)
    override def prefix: Type = NoType
    override def typeArgs: List[Type] = List()
    override def typeParams: List[Symbol] = List()
*/
  }

  /** An object representing an erroneous type */
  case object ErrorType extends Type {
    // todo see whether we can do without
    override def isError: Boolean = true
    override def decls: Scope = new ErrorScope(NoSymbol)
    override def findMember(name: Name, excludedFlags: Long, requiredFlags: Long, stableOnly: Boolean): Symbol = {
      var sym = decls lookup name
      if (sym == NoSymbol) {
        sym = NoSymbol.newErrorSymbol(name)
        decls enter sym
      }
      sym
    }
    override def baseType(clazz: Symbol): Type = this
    override def safeToString: String = "<error>"
    override def narrow: Type = this
    override def kind = "ErrorType"
  }

  /** An object representing an unknown type, used during type inference.
   *  If you see WildcardType outside of inference it is almost certainly a bug.
   */
  case object WildcardType extends Type {
    override def isWildcard = true
    override def safeToString: String = "?"
    override def kind = "WildcardType"
  }
  /** BoundedWildcardTypes, used only during type inference, are created in
   *  two places that I can find:
   *
   *    1. If the expected type of an expression is an existential type,
   *       its hidden symbols are replaced with bounded wildcards.
   *    2. When an implicit conversion is being sought based in part on
   *       the name of a method in the converted type, a HasMethodMatching
   *       type is created: a MethodType with parameters typed as
   *       BoundedWildcardTypes.
   */
  case class BoundedWildcardType(override val bounds: TypeBounds) extends Type with BoundedWildcardTypeApi {
    override def isWildcard = true
    override def safeToString: String = "?" + bounds
    override def kind = "BoundedWildcardType"
  }

  object BoundedWildcardType extends BoundedWildcardTypeExtractor

  /** An object representing a non-existing type */
  case object NoType extends Type {
    override def isTrivial: Boolean = true
    override def safeToString: String = "<notype>"
    override def kind = "NoType"
  }

  /** An object representing a non-existing prefix */
  case object NoPrefix extends Type {
    override def isTrivial: Boolean = true
    override def prefixString = ""
    override def safeToString: String = "<noprefix>"
    override def kind = "NoPrefixType"
  }

  /** A class for this-types of the form <sym>.this.type
   */
  abstract case class ThisType(sym: Symbol) extends SingletonType with ThisTypeApi {
    if (!sym.isClass && !sym.isFreeType) {
      // SI-6640 allow StubSymbols to reveal what's missing from the classpath before we trip the assertion.
      sym.failIfStub()
      abort(s"ThisType($sym) for sym which is not a class")
    }

    override def isTrivial: Boolean = sym.isPackageClass
    override def typeSymbol = sym
    override def underlying: Type = sym.typeOfThis
    override def isHigherKinded = sym.isRefinementClass && underlying.isHigherKinded
    override def prefixString =
      if (settings.debug) sym.nameString + ".this."
      else if (sym.isAnonOrRefinementClass) "this."
      else if (sym.isOmittablePrefix) ""
      else if (sym.isModuleClass) sym.fullNameString + "."
      else sym.nameString + ".this."
    override def safeToString: String =
      if (sym.isEffectiveRoot) "" + sym.name
      else super.safeToString
    override def narrow: Type = this
    override def kind = "ThisType"
  }

  final class UniqueThisType(sym: Symbol) extends ThisType(sym) { }

  object ThisType extends ThisTypeExtractor {
    def apply(sym: Symbol): Type = (
      if (!phase.erasedTypes) unique(new UniqueThisType(sym))
      else sym.tpe_*
    )
  }

  /** A class for singleton types of the form `<prefix>.<sym.name>.type`.
   *  Cannot be created directly; one should always use `singleType` for creation.
   */
  abstract case class SingleType(pre: Type, sym: Symbol) extends SingletonType with SingleTypeApi {
    private var trivial: ThreeValue = UNKNOWN
    override def isTrivial: Boolean = {
      if (trivial == UNKNOWN) trivial = fromBoolean(pre.isTrivial)
      toBoolean(trivial)
    }
    override def isGround = sym.isPackageClass || pre.isGround

    private[reflect] var underlyingCache: Type = NoType
    private[reflect] var underlyingPeriod = NoPeriod
    private[Types] def invalidateSingleTypeCaches(): Unit = {
      underlyingCache = NoType
      underlyingPeriod = NoPeriod
    }
    override def underlying: Type = {
      val cache = underlyingCache
      if (underlyingPeriod == currentPeriod && cache != null) cache
      else {
        defineUnderlyingOfSingleType(this)
        underlyingCache
      }
    }

    // more precise conceptually, but causes cyclic errors:    (paramss exists (_ contains sym))
    override def isImmediatelyDependent = (sym ne NoSymbol) && (sym.owner.isMethod && sym.isValueParameter)
/*
    override def narrow: Type = {
      if (phase.erasedTypes) this
      else {
        val thissym = refinedType(List(this), sym.owner, EmptyScope).typeSymbol
        if (sym.owner != NoSymbol) {
          //Console.println("narrowing module " + sym + thissym.owner);
          thissym.typeOfThis = this
        }
        thissym.thisType
      }
    }
*/
    override def narrow: Type = this

    override def termSymbol = sym
    override def prefix: Type = pre
    override def prefixString = (
      if (sym.skipPackageObject.isOmittablePrefix) ""
      else if (sym.isPackageObjectOrClass) pre.prefixString
      else pre.prefixString + sym.nameString + "."
    )
    override def kind = "SingleType"
  }

  final class UniqueSingleType(pre: Type, sym: Symbol) extends SingleType(pre, sym)

  object SingleType extends SingleTypeExtractor {
    def apply(pre: Type, sym: Symbol): Type = {
      unique(new UniqueSingleType(pre, sym))
    }
  }

  protected def defineUnderlyingOfSingleType(tpe: SingleType) = {
    val period = tpe.underlyingPeriod
    if (period != currentPeriod) {
      tpe.underlyingPeriod = currentPeriod
      if (!isValid(period)) {
        // [Eugene to Paul] needs review
        tpe.underlyingCache = if (tpe.sym == NoSymbol) ThisType(rootMirror.RootClass) else tpe.pre.memberType(tpe.sym).resultType
        assert(tpe.underlyingCache ne tpe, tpe)
      }
    }
  }

  abstract case class SuperType(thistpe: Type, supertpe: Type) extends SingletonType with SuperTypeApi {
    private var trivial: ThreeValue = UNKNOWN
    override def isTrivial: Boolean = {
      if (trivial == UNKNOWN) trivial = fromBoolean(thistpe.isTrivial && supertpe.isTrivial)
      toBoolean(trivial)
    }
    override def typeSymbol = thistpe.typeSymbol
    override def underlying = supertpe
    override def prefix: Type = supertpe.prefix
    override def prefixString = thistpe.prefixString.replaceAll("""\bthis\.$""", "super.")
    override def narrow: Type = thistpe.narrow
    override def kind = "SuperType"
  }

  final class UniqueSuperType(thistp: Type, supertp: Type) extends SuperType(thistp, supertp)

  object SuperType extends SuperTypeExtractor {
    def apply(thistp: Type, supertp: Type): Type = {
      if (phase.erasedTypes) supertp
      else unique(new UniqueSuperType(thistp, supertp))
    }
  }

  /** A class for the bounds of abstract types and type parameters
   */
  abstract case class TypeBounds(lo: Type, hi: Type) extends SubType with TypeBoundsApi {
    def supertype = hi
    override def isTrivial: Boolean = lo.isTrivial && hi.isTrivial
    override def bounds: TypeBounds = this
    def containsType(that: Type) = that match {
      case TypeBounds(_, _) => that <:< this
      case _                => lo <:< that && that <:< hi
    }
    private def emptyLowerBound = typeIsNothing(lo) || lo.isWildcard
    private def emptyUpperBound = typeIsAny(hi) || hi.isWildcard
    def isEmptyBounds = emptyLowerBound && emptyUpperBound

    override def safeToString = scalaNotation(_.toString)

    /** Bounds notation used in Scala syntax.
      * For example +This <: scala.collection.generic.Sorted[K,This].
      */
    private[internal] def scalaNotation(typeString: Type => String): String = {
      (if (emptyLowerBound) "" else " >: " + typeString(lo)) +
      (if (emptyUpperBound) "" else " <: " + typeString(hi))
    }
    /** Bounds notation used in http://adriaanm.github.com/files/higher.pdf.
      * For example *(scala.collection.generic.Sorted[K,This]).
      */
    private[internal] def starNotation(typeString: Type => String): String = {
      if (emptyLowerBound && emptyUpperBound) ""
      else if (emptyLowerBound) "(" + typeString(hi) + ")"
      else "(%s, %s)" format (typeString(lo), typeString(hi))
    }
    override def kind = "TypeBoundsType"
  }

  final class UniqueTypeBounds(lo: Type, hi: Type) extends TypeBounds(lo, hi)

  object TypeBounds extends TypeBoundsExtractor {
    def empty: TypeBounds           = apply(NothingTpe, AnyTpe)
    def upper(hi: Type): TypeBounds = apply(NothingTpe, hi)
    def lower(lo: Type): TypeBounds = apply(lo, AnyTpe)
    def apply(lo: Type, hi: Type): TypeBounds = {
      unique(new UniqueTypeBounds(lo, hi)).asInstanceOf[TypeBounds]
    }
  }

  object CompoundType {
    def unapply(tp: Type): Option[(List[Type], Scope, Symbol)] = tp match {
      case ClassInfoType(parents, decls, clazz) => Some((parents, decls, clazz))
      case RefinedType(parents, decls)          => Some((parents, decls, tp.typeSymbol))
      case _                                    => None
    }
  }

  /** A common base class for intersection types and class types
   */
  abstract class CompoundType extends Type with CompoundTypeApi {

    private[reflect] var baseTypeSeqCache: BaseTypeSeq = _
    private[reflect] var baseTypeSeqPeriod = NoPeriod
    private[reflect] var baseClassesCache: List[Symbol] = _
    private[reflect] var baseClassesPeriod = NoPeriod
    private[Types] def invalidatedCompoundTypeCaches() {
      baseTypeSeqCache = null
      baseTypeSeqPeriod = NoPeriod
      baseClassesCache = null
      baseClassesPeriod = NoPeriod
    }

    override def baseTypeSeq: BaseTypeSeq = {
      val cached = baseTypeSeqCache
      if (baseTypeSeqPeriod == currentPeriod && cached != null && cached != undetBaseTypeSeq)
        cached
      else {
        defineBaseTypeSeqOfCompoundType(this)
        if (baseTypeSeqCache eq undetBaseTypeSeq)
          throw new RecoverableCyclicReference(typeSymbol)

        baseTypeSeqCache
      }
    }

    override def baseTypeSeqDepth: Depth = baseTypeSeq.maxDepth

    override def baseClasses: List[Symbol] = {
      val cached = baseClassesCache
      if (baseClassesPeriod == currentPeriod && cached != null) cached
      else {
        defineBaseClassesOfCompoundType(this)
        if (baseClassesCache eq null)
          throw new RecoverableCyclicReference(typeSymbol)

        baseClassesCache
      }
    }

    /** The slightly less idiomatic use of Options is due to
     *  performance considerations. A version using for comprehensions
     *  might be too slow (this is deemed a hotspot of the type checker).
     *
     *  See with Martin before changing this method.
     */
    def memo[A](op1: => A)(op2: Type => A): A = {
      def updateCache(): A = {
        intersectionWitness(parents) = new WeakReference(this)
        op1
      }

      intersectionWitness get parents match {
        case Some(ref) =>
          ref.get match {
            case Some(w) => if (w eq this) op1 else op2(w)
            case None => updateCache()
          }
        case None => updateCache()
      }
    }

    override def baseType(sym: Symbol): Type = {
      val index = baseTypeIndex(sym)
      if (index >= 0) baseTypeSeq(index) else NoType
    }

    override def narrow: Type = typeSymbol.thisType

    override def isStructuralRefinement: Boolean =
      typeSymbol.isAnonOrRefinementClass && (decls exists symbolIsPossibleInRefinement)

    protected def shouldForceScope = settings.debug || parents.isEmpty || !decls.isEmpty
    protected def initDecls        = fullyInitializeScope(decls)
    protected def scopeString      = if (shouldForceScope) initDecls.mkString("{", "; ", "}") else ""
    override def safeToString      = parentsString(parents) + scopeString
  }

  protected def computeBaseClasses(tpe: Type): List[Symbol] = {
    val parents = tpe.parents // adriaan says tpe.parents does work sometimes, so call it only once
    val baseTail = (
      if (parents.isEmpty || parents.head.isInstanceOf[PackageTypeRef]) Nil
      else {
        //Console.println("computing base classes of " + typeSymbol + " at phase " + phase);//DEBUG
        // optimized, since this seems to be performance critical
        val superclazz = parents.head // parents.isEmpty was already excluded
        var mixins     = parents.tail
        val sbcs       = superclazz.baseClasses
        var bcs        = sbcs
        def isNew(clazz: Symbol): Boolean = (
          superclazz.baseTypeIndex(clazz) < 0 &&
          { var p = bcs
            while ((p ne sbcs) && (p.head != clazz)) p = p.tail
            p eq sbcs
          }
        )
        while (!mixins.isEmpty) {
          def addMixinBaseClasses(mbcs: List[Symbol]): List[Symbol] =
            if (mbcs.isEmpty) bcs
            else if (isNew(mbcs.head)) mbcs.head :: addMixinBaseClasses(mbcs.tail)
            else addMixinBaseClasses(mbcs.tail)
          bcs = addMixinBaseClasses(mixins.head.baseClasses)
          mixins = mixins.tail
        }
        bcs
      }
    )
    tpe.typeSymbol :: baseTail
  }

  protected def defineBaseTypeSeqOfCompoundType(tpe: CompoundType) = {
    val period = tpe.baseTypeSeqPeriod
    if (period != currentPeriod) {
      tpe.baseTypeSeqPeriod = currentPeriod
      if (!isValidForBaseClasses(period)) {
        if (tpe.parents exists typeContainsTypeVar) {
          // rename type vars to fresh type params, take base type sequence of
          // resulting type, and rename back all the entries in that sequence
          var tvs = Set[TypeVar]()
          for (p <- tpe.parents)
            for (t <- p) t match {
              case tv: TypeVar => tvs += tv
              case _ =>
            }
          val varToParamMap: Map[Type, Symbol] =
            mapFrom[TypeVar, Type, Symbol](tvs.toList)(_.origin.typeSymbol.cloneSymbol)
          val paramToVarMap = varToParamMap map (_.swap)
          val varToParam = new TypeMap {
            def apply(tp: Type) = varToParamMap get tp match {
              case Some(sym) => sym.tpe_*
              case _ => mapOver(tp)
            }
          }
          val paramToVar = new TypeMap {
            def apply(tp: Type) = tp match {
              case TypeRef(_, tsym, _) if paramToVarMap.isDefinedAt(tsym) => paramToVarMap(tsym)
              case _ => mapOver(tp)
            }
          }
          val bts = copyRefinedType(tpe.asInstanceOf[RefinedType], tpe.parents map varToParam, varToParam mapOver tpe.decls).baseTypeSeq
          tpe.baseTypeSeqCache = bts lateMap paramToVar
        } else {
          if (Statistics.canEnable) Statistics.incCounter(compoundBaseTypeSeqCount)
          val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, baseTypeSeqNanos) else null
          try {
            tpe.baseTypeSeqCache = undetBaseTypeSeq
            tpe.baseTypeSeqCache =
              if (tpe.typeSymbol.isRefinementClass)
                tpe.memo(compoundBaseTypeSeq(tpe))(_.baseTypeSeq updateHead tpe.typeSymbol.tpe_*)
              else
                compoundBaseTypeSeq(tpe)
          } finally {
            if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
          }
          // [Martin] suppressing memoization solves the problem with "same type after erasure" errors
          // when compiling with
          // scalac scala.collection.IterableViewLike.scala scala.collection.IterableLike.scala
          // I have not yet figured out precisely why this is the case.
          // My current assumption is that taking memos forces baseTypeSeqs to be computed
          // at stale types (i.e. the underlying typeSymbol has already another type).
          // I do not yet see precisely why this would cause a problem, but it looks
          // fishy in any case.
        }
      }
    }
    //Console.println("baseTypeSeq(" + typeSymbol + ") = " + baseTypeSeqCache.toList);//DEBUG
    if (tpe.baseTypeSeqCache eq undetBaseTypeSeq)
      throw new TypeError("illegal cyclic inheritance involving " + tpe.typeSymbol)
  }

  object baseClassesCycleMonitor {
    private var open: List[Symbol] = Nil
    @inline private def cycleLog(msg: => String) {
      if (settings.debug)
        Console.err.println(msg)
    }
    def size = open.size
    def push(clazz: Symbol) {
      cycleLog("+ " + ("  " * size) + clazz.fullNameString)
      open ::= clazz
    }
    def pop(clazz: Symbol) {
      assert(open.head eq clazz, (clazz, open))
      open = open.tail
    }
    def isOpen(clazz: Symbol) = open contains clazz
  }

  protected def defineBaseClassesOfCompoundType(tpe: CompoundType) {
    def define() = defineBaseClassesOfCompoundType(tpe, force = false)
    if (!breakCycles || isPastTyper) define()
    else tpe match {
      // non-empty parents helpfully excludes all package classes
      case tpe @ ClassInfoType(_ :: _, _, clazz) if !clazz.isAnonOrRefinementClass =>
        // Cycle: force update
        if (baseClassesCycleMonitor isOpen clazz)
          defineBaseClassesOfCompoundType(tpe, force = true)
        else {
          baseClassesCycleMonitor push clazz
          try define()
          finally baseClassesCycleMonitor pop clazz
        }
      case _ =>
        define()
    }
  }
  private def defineBaseClassesOfCompoundType(tpe: CompoundType, force: Boolean) {
    val period = tpe.baseClassesPeriod
    if (period == currentPeriod) {
      if (force && breakCycles) {
        def what = tpe.typeSymbol + " in " + tpe.typeSymbol.owner.fullNameString
        val bcs  = computeBaseClasses(tpe)
        tpe.baseClassesCache = bcs
        warning(s"Breaking cycle in base class computation of $what ($bcs)")
      }
    }
    else {
      tpe.baseClassesPeriod = currentPeriod
      if (!isValidForBaseClasses(period)) {
        val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, baseClassesNanos) else null
        try {
          tpe.baseClassesCache = null
          tpe.baseClassesCache = tpe.memo(computeBaseClasses(tpe))(tpe.typeSymbol :: _.baseClasses.tail)
        }
        finally {
          if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
        }
      }
    }
    if (tpe.baseClassesCache eq null)
      throw new TypeError("illegal cyclic reference involving " + tpe.typeSymbol)
  }

  /** A class representing intersection types with refinements of the form
   *    `<parents_0> with ... with <parents_n> { decls }`
   *  Cannot be created directly;
   *  one should always use `refinedType` for creation.
   */
  case class RefinedType(override val parents: List[Type],
                         override val decls: Scope) extends CompoundType with RefinedTypeApi {
    override def isHigherKinded = (
      parents.nonEmpty &&
      (parents forall typeIsHigherKinded) &&
      !phase.erasedTypes
    )
    override def typeParams =
      if (isHigherKinded) firstParent.typeParams
      else super.typeParams

    //@M may result in an invalid type (references to higher-order args become dangling )
    override def typeConstructor =
      copyRefinedType(this, parents map (_.typeConstructor), decls)

    final override def normalize: Type =
      if (phase.erasedTypes) normalizeImpl
      else {
        if (normalized eq null) normalized = normalizeImpl
        normalized
      }

    private var normalized: Type = _
    private def normalizeImpl = {
      // TODO see comments around def intersectionType and def merge
      // SI-8575 The dealias is needed here to keep subtyping transitive, example in run/t8575b.scala
      def flatten(tps: List[Type]): List[Type] = {
        def dealiasRefinement(tp: Type) = if (tp.dealias.isInstanceOf[RefinedType]) tp.dealias else tp
        tps map dealiasRefinement flatMap {
          case RefinedType(parents, ds) if ds.isEmpty => flatten(parents)
          case tp => List(tp)
        }
      }
      val flattened = flatten(parents).distinct
      if (decls.isEmpty && hasLength(flattened, 1)) {
        flattened.head
      } else if (flattened != parents) {
        refinedType(flattened, if (typeSymbol eq NoSymbol) NoSymbol else typeSymbol.owner, decls, NoPosition)
      } else if (isHigherKinded) {
        etaExpand
      } else super.normalize
    }

    final override def etaExpand: Type = {
      // MO to AM: This is probably not correct
      // If they are several higher-kinded parents with different bounds we need
      // to take the intersection of their bounds
      // !!! inconsistent with TypeRef.etaExpand that uses initializedTypeParams
      if (!isHigherKinded) this
      else typeFun(
        typeParams,
        RefinedType(
          parents map {
            case TypeRef(pre, sym, List()) => TypeRef(pre, sym, dummyArgs)
            case p => p
          },
          decls,
          typeSymbol))
    }

    override def kind = "RefinedType"
  }

  final class RefinedType0(parents: List[Type], decls: Scope, clazz: Symbol) extends RefinedType(parents, decls) {
    override def typeSymbol = clazz
  }

  object RefinedType extends RefinedTypeExtractor {
    def apply(parents: List[Type], decls: Scope, clazz: Symbol): RefinedType =
      new RefinedType0(parents, decls, clazz)
  }

  /** Overridden in reflection compiler */
  def validateClassInfo(tp: ClassInfoType) {}

  /** A class representing a class info
   */
  case class ClassInfoType(
    override val parents: List[Type],
    override val decls: Scope,
    override val typeSymbol: Symbol) extends CompoundType with ClassInfoTypeApi
  {
    validateClassInfo(this)

    /** refs indices */
    private final val NonExpansive = 0
    private final val Expansive = 1

    /** initialization states */
    private final val UnInitialized = 0
    private final val Initializing = 1
    private final val Initialized = 2

    private type RefMap = Map[Symbol, immutable.Set[Symbol]]

    /** All type parameters reachable from given type parameter
     *  by a path which contains at least one expansive reference.
     *  @See Kennedy, Pierce: On Decidability of Nominal Subtyping with Variance
     */
    private[scala] def expansiveRefs(tparam: Symbol) = {
      if (state == UnInitialized) {
        computeRefs()
        while (state != Initialized) propagate()
      }
      getRefs(Expansive, tparam)
    }

    /* The rest of this class is auxiliary code for `expansiveRefs`
     */

    /** The type parameters which are referenced type parameters of this class.
     *  Two entries: refs(0): Non-expansive references
     *               refs(1): Expansive references
     *  Syncnote: This var need not be protected with synchronized, because
     *  it is accessed only from expansiveRefs, which is called only from
     *  Typer.
     */
    private var refs: Array[RefMap] = _

    /** The initialization state of the class: UnInitialized --> Initializing --> Initialized
     *  Syncnote: This var need not be protected with synchronized, because
     *  it is accessed only from expansiveRefs, which is called only from
     *  Typer.
     */
    private var state = UnInitialized

    /** Get references for given type parameter
     *  @param  which in {NonExpansive, Expansive}
     *  @param  from  The type parameter from which references originate.
     */
    private def getRefs(which: Int, from: Symbol): Set[Symbol] = refs(which) get from match {
      case Some(set) => set
      case none => Set()
    }

    /** Augment existing refs map with reference <pre>from -> to</pre>
     *  @param  which <- {NonExpansive, Expansive}
     */
    private def addRef(which: Int, from: Symbol, to: Symbol) {
      refs(which) = refs(which) + (from -> (getRefs(which, from) + to))
    }

    /** Augment existing refs map with references <pre>from -> sym</pre>, for
     *  all elements <pre>sym</pre> of set `to`.
     *  @param  which <- {NonExpansive, Expansive}
     */
    private def addRefs(which: Int, from: Symbol, to: Set[Symbol]) {
      refs(which) = refs(which) + (from -> (getRefs(which, from) ++ to))
    }

    /** The ClassInfoType which belongs to the class containing given type parameter
     */
    private def classInfo(tparam: Symbol): ClassInfoType =
      tparam.owner.info.resultType match {
        case ci: ClassInfoType => ci
        case _ => classInfo(ObjectClass) // something's wrong; fall back to safe value
                                         // (this can happen only for erroneous programs).
      }

    private object enterRefs extends TypeMap {
      private var tparam: Symbol = _

      def apply(tp: Type): Type = {
        tp match {
          case tr @ TypeRef(_, sym, args) if args.nonEmpty =>
            val tparams = tr.initializedTypeParams
            if (settings.debug && !sameLength(tparams, args))
              devWarning(s"Mismatched zip in computeRefs(): ${sym.info.typeParams}, $args")

            foreach2(tparams, args) { (tparam1, arg) =>
              if (arg contains tparam) {
                addRef(NonExpansive, tparam, tparam1)
                if (arg.typeSymbol != tparam)
                  addRef(Expansive, tparam, tparam1)
              }
            }
          case _ =>
        }
        mapOver(tp)
      }
      def enter(tparam0: Symbol, parent: Type) {
        this.tparam = tparam0
        this(parent)
      }
    }

    /** Compute initial (one-step) references and set state to `Initializing`.
     */
    private def computeRefs() {
      refs = Array(Map(), Map())
      typeSymbol.typeParams foreach { tparam =>
        parents foreach { p =>
          enterRefs.enter(tparam, p)
        }
      }
      state = Initializing
    }

    /** Propagate to form transitive closure.
     *  Set state to Initialized if no change resulted from propagation.
     *  @return   true iff there as a change in last iteration
     */
    private def propagate(): Boolean = {
      if (state == UnInitialized) computeRefs()
      //Console.println("Propagate "+symbol+", initial expansive = "+refs(Expansive)+", nonexpansive = "+refs(NonExpansive))//DEBUG
      val lastRefs = Array(refs(0), refs(1))
      state = Initialized
      var change = false
      for ((from, targets) <- refs(NonExpansive).iterator)
        for (target <- targets) {
          val thatInfo = classInfo(target)
          if (thatInfo.state != Initialized)
            change = change | thatInfo.propagate()
          addRefs(NonExpansive, from, thatInfo.getRefs(NonExpansive, target))
          addRefs(Expansive, from, thatInfo.getRefs(Expansive, target))
        }
      for ((from, targets) <- refs(Expansive).iterator)
        for (target <- targets) {
          val thatInfo = classInfo(target)
          if (thatInfo.state != Initialized)
            change = change | thatInfo.propagate()
          addRefs(Expansive, from, thatInfo.getRefs(NonExpansive, target))
        }
      change = change || refs(0) != lastRefs(0) || refs(1) != lastRefs(1)
      if (change) state = Initializing
      //else Console.println("Propagate "+symbol+", final expansive = "+refs(Expansive)+", nonexpansive = "+refs(NonExpansive))//DEBUG
      change
    }

    override def kind = "ClassInfoType"
    /** A nicely formatted string with newlines and such.
     */
    def formattedToString = parents.mkString("\n        with ") + scopeString
    override protected def shouldForceScope = settings.debug || decls.size > 1
    override protected def scopeString      = initDecls.mkString(" {\n  ", "\n  ", "\n}")
    override def safeToString               = if (shouldForceScope) formattedToString else super.safeToString
  }

  object ClassInfoType extends ClassInfoTypeExtractor

  class PackageClassInfoType(decls: Scope, clazz: Symbol)
  extends ClassInfoType(List(), decls, clazz)

  /** A class representing a constant type.
   */
  abstract case class ConstantType(value: Constant) extends SingletonType with ConstantTypeApi {
    override def underlying: Type = value.tpe
    assert(underlying.typeSymbol != UnitClass)
    override def isTrivial: Boolean = true
    override def deconst: Type = underlying.deconst
    override def safeToString: String =
      underlying.toString + "(" + value.escapedStringValue + ")"
    override def kind = "ConstantType"
  }

  final class UniqueConstantType(value: Constant) extends ConstantType(value)

  object ConstantType extends ConstantTypeExtractor {
    def apply(value: Constant) = unique(new UniqueConstantType(value))
  }

  /* Syncnote: The `volatile` var and `pendingVolatiles` mutable set need not be protected
   * with synchronized, because they are accessed only from isVolatile, which is called only from
   * Typer.
   */
  private var volatileRecursions: Int = 0
  private val pendingVolatiles = new mutable.HashSet[Symbol]

  class ArgsTypeRef(pre0: Type, sym0: Symbol, args0: List[Type]) extends TypeRef(pre0, sym0, args0) {
    require(args0 ne Nil, this)

    /** No unapplied type params size it has (should have) equally as many args. */
    override def isHigherKinded = false
    override def typeParams = Nil

    // note: does not go through typeRef. There's no need to because
    // neither `pre` nor `sym` changes.  And there's a performance
    // advantage to call TypeRef directly.
    override def typeConstructor = TypeRef(pre, sym, Nil)
  }

  class ModuleTypeRef(pre0: Type, sym0: Symbol) extends NoArgsTypeRef(pre0, sym0) {
    require(sym.isModuleClass, sym)
    private[this] var narrowedCache: Type = _
    override def narrow = {
      if (narrowedCache eq null)
        narrowedCache = singleType(pre, sym.sourceModule)

      narrowedCache
    }
    override private[Types] def invalidateTypeRefCaches(): Unit = {
      super.invalidateTypeRefCaches()
      narrowedCache = null
    }
    override protected def finishPrefix(rest: String) = objectPrefix + rest
    override def directObjectString = super.safeToString
    override def toLongString = toString
    override def safeToString = prefixString + "type"
    override def prefixString = if (sym.isOmittablePrefix) "" else prefix.prefixString + sym.nameString + "."
  }
  class PackageTypeRef(pre0: Type, sym0: Symbol) extends ModuleTypeRef(pre0, sym0) {
    require(sym.isPackageClass, sym)
    override protected def finishPrefix(rest: String) = packagePrefix + rest
  }
  class RefinementTypeRef(pre0: Type, sym0: Symbol) extends NoArgsTypeRef(pre0, sym0) {
    require(sym.isRefinementClass, sym)

    // I think this is okay, but see #1241 (r12414), #2208, and typedTypeConstructor in Typers
    override protected def normalizeImpl: Type = pre.memberInfo(sym).normalize
    override protected def finishPrefix(rest: String) = "" + sym.info
  }

  class NoArgsTypeRef(pre0: Type, sym0: Symbol) extends TypeRef(pre0, sym0, Nil) {
    // A reference (in a Scala program) to a type that has type parameters, but where the reference
    // does not include type arguments. Note that it doesn't matter whether the symbol refers
    // to a java or scala symbol, but it does matter whether it occurs in java or scala code.
    // TypeRefs w/o type params that occur in java signatures/code are considered raw types, and are
    // represented as existential types.
    override def isHigherKinded = (typeParams ne Nil)
    override def typeParams     = if (isDefinitionsInitialized) sym.typeParams else sym.unsafeTypeParams

    override def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]): Type =
      if (isHigherKinded) {
        if (sameLength(formals intersect typeParams, typeParams))
          copyTypeRef(this, pre, sym, actuals)
        // partial application (needed in infer when bunching type arguments from classes and methods together)
        else
          copyTypeRef(this, pre, sym, dummyArgs).instantiateTypeParams(formals, actuals)
      }
      else
        super.instantiateTypeParams(formals, actuals)

    override def narrow =
      if (sym.isModuleClass) singleType(pre, sym.sourceModule)
      else super.narrow

    override def typeConstructor = this
    // eta-expand, subtyping relies on eta-expansion of higher-kinded types

    override protected def normalizeImpl: Type =
      if (isHigherKinded) etaExpand else super.normalizeImpl
  }

  trait NonClassTypeRef extends TypeRef {
    require(sym.isNonClassType, sym)

    /** Syncnote: These are pure caches for performance; no problem to evaluate these
      * several times. Hence, no need to protected with synchronized in a multi-threaded
      * usage scenario.
      */
    private var relativeInfoCache: Type = _
    private var relativeInfoCacheValidForPeriod: Period = NoPeriod
    private var relativeInfoCacheValidForSymInfo: Type = _

    override private[Types] def invalidateTypeRefCaches(): Unit = {
      super.invalidateTypeRefCaches()
      relativeInfoCache = NoType
      relativeInfoCacheValidForPeriod = NoPeriod
      relativeInfoCacheValidForSymInfo = null
    }

    final override protected def relativeInfo = {
      val symInfo = sym.info
      if ((relativeInfoCache eq null) || (relativeInfoCacheValidForSymInfo ne symInfo) || (relativeInfoCacheValidForPeriod != currentPeriod)) {
        relativeInfoCache = super.relativeInfo

        if (this.isInstanceOf[AbstractTypeRef]) validateRelativeInfo()

        relativeInfoCacheValidForSymInfo = symInfo
        relativeInfoCacheValidForPeriod = currentPeriod
      }
      relativeInfoCache
    }

    private def validateRelativeInfo(): Unit = relativeInfoCache match {
      // If a subtyping cycle is not detected here, we'll likely enter an infinite
      // loop before a sensible error can be issued.  SI-5093 is one example.
      case x: SubType if x.supertype eq this =>
        relativeInfoCache = null
        throw new RecoverableCyclicReference(sym)
      case _ =>
    }
  }


  trait AliasTypeRef extends NonClassTypeRef {
    require(sym.isAliasType, sym)

    override def dealias    = if (typeParamsMatchArgs) betaReduce.dealias else super.dealias
    override def narrow     = normalize.narrow
    override def prefix     = if (this ne normalize) normalize.prefix else pre
    override def termSymbol = if (this ne normalize) normalize.termSymbol else super.termSymbol
    override def typeSymbol = if (this ne normalize) normalize.typeSymbol else sym

    override protected[Types] def parentsImpl: List[Type] = normalize.parents map relativize

    // `baseClasses` is sensitive to type args when referencing type members
    // consider `type foo[x] = x`, `typeOf[foo[String]].baseClasses` should be the same as `typeOf[String].baseClasses`,
    // which would be lost by looking at `sym.info` without propagating args
    // since classes cannot be overridden, the prefix can be ignored
    //  (in fact, taking the prefix into account by replacing `normalize`
    //   with `relativeInfo` breaks pos/t8177g.scala, which is probably a bug, but a tricky one...
    override def baseClasses  = normalize.baseClasses

    // similar reasoning holds here as for baseClasses
    // as another example, consider the type alias `Foo` in `class O { o => type Foo = X { val bla: o.Bar }; type Bar }`
    // o1.Foo and o2.Foo have different decls `val bla: o1.Bar` versus `val bla: o2.Bar`
    // In principle, you should only call `sym.info.decls` when you know `sym.isClass`,
    // and you should `relativize` the infos of the resulting members.
    // The latter is certainly violated in multiple spots in the codebase (the members are usually transformed correctly, though).
    override def decls: Scope = normalize.decls

    // beta-reduce, but don't do partial application -- cycles have been checked in typeRef
    override protected def normalizeImpl =
      if (typeParamsMatchArgs) betaReduce.normalize
      else if (isHigherKinded) super.normalizeImpl
      else {
        // if we are overriding a type alias in an erroneous way, don't just
        // return an ErrorType since that will result in useless error msg.
        // Instead let's try to recover from it and rely on refcheck reporting the correct error,
        // if that fails fallback to the old behaviour.
        val overriddenSym = sym.nextOverriddenSymbol
        if (overriddenSym != NoSymbol) pre.memberType(overriddenSym).normalize
        else ErrorType
      }

    // isHKSubType introduces synthetic type params so that
    // betaReduce can first apply sym.info to typeArgs before calling
    // asSeenFrom.  asSeenFrom then skips synthetic type params, which
    // are used to reduce HO subtyping to first-order subtyping, but
    // which can't be instantiated from the given prefix and class.
    //
    // this crashes pos/depmet_implicit_tpbetareduce.scala
    // appliedType(sym.info, typeArgs).asSeenFrom(pre, sym.owner)
    override def betaReduce = relativize(sym.info.resultType)

    /** SI-3731, SI-8177: when prefix is changed to `newPre`, maintain consistency of prefix and sym
     *  (where the symbol refers to a declaration "embedded" in the prefix).
     *
     *  @return newSym so that `newPre` binds `sym.name` to `newSym`,
     *                  to remain consistent with `pre` previously binding `sym.name` to `sym`.
     *
     *  `newSym` and `sym` are conceptually the same symbols, but some change to our `prefix`
     *  got them out of whack. (Usually triggered by substitution or `asSeenFrom`.)
     *  The only kind of "binds" we consider is where `prefix` (or its underlying type)
     *  is a refined type that declares `sym` (since the old prefix was discarded,
     *  the old symbol is now stale and we should update it, like in `def rebind`,
     *  except this is not for overriding symbols -- a vertical move -- but a "lateral" change.)
     *
     *  The reason for this hack is that substitution and asSeenFrom clone RefinedTypes and
     *  their members, without updating the potential references to those members -- here, we aim to patch
     *  this up, so that: when changing a TypeRef(pre, sym, args) to a TypeRef(pre', sym', args'), and pre
     *  embeds a symbol sym (pre is a RefinedType(_, Scope(..., sym,...)) or a SingleType with such an
     *  underlying type), make sure that we update sym' to compensate for the change of pre -> pre' (which may
     *  have created a new symbol for the one the original sym referred to)
     */
    override def coevolveSym(newPre: Type): Symbol =
      if ((pre ne newPre) && embeddedSymbol(pre, sym.name) == sym) {
        val newSym = embeddedSymbol(newPre, sym.name)
        debuglog(s"co-evolve: ${pre} -> ${newPre}, $sym : ${sym.info} -> $newSym : ${newSym.info}")
        // To deal with erroneous `preNew`, fallback via `orElse sym`, in case `preNew` does not have a decl named `sym.name`.
        newSym orElse sym
      } else sym

    override def kind = "AliasTypeRef"
  }

  // Return the symbol named `name` that's "embedded" in tp
  // This is the case if `tp` is a `T{...; type/val $name ; ...}`,
  // or a singleton type with such an underlying type.
  private def embeddedSymbol(tp: Type, name: Name): Symbol =
    // normalize to flatten nested RefinedTypes
    // don't check whether tp is a RefinedType -- it may be a ThisType of one, for example
    // TODO: check the resulting symbol is owned by the refinement class? likely an invariant...
    if (tp.typeSymbol.isRefinementClass) tp.normalize.decls lookup name
    else {
      debuglog(s"no embedded symbol $name found in ${showRaw(tp)} --> ${tp.normalize.decls lookup name}")
      NoSymbol
    }


  trait AbstractTypeRef extends NonClassTypeRef {
    require(sym.isAbstractType, sym)

    override def baseClasses = relativeInfo.baseClasses
    override def decls       = relativeInfo.decls
    override def bounds      = relativeInfo.bounds

    override protected[Types] def baseTypeSeqImpl: BaseTypeSeq = bounds.hi.baseTypeSeq prepend this
    override protected[Types] def parentsImpl: List[Type] = relativeInfo.parents

    override def kind = "AbstractTypeRef"
  }

  /** A class for named types of the form
   *    `<prefix>.<sym.name>[args]`
   *  Cannot be created directly; one should always use `typeRef`
   *  for creation. (@M: Otherwise hashing breaks)
   *
   * @M: a higher-kinded type is represented as a TypeRef with sym.typeParams.nonEmpty, but args.isEmpty
   */
  abstract case class TypeRef(pre: Type, sym: Symbol, args: List[Type]) extends UniqueType with TypeRefApi {
    private var trivial: ThreeValue = UNKNOWN
    override def isTrivial: Boolean = {
      if (trivial == UNKNOWN)
        trivial = fromBoolean(!sym.isTypeParameter && pre.isTrivial && areTrivialTypes(args))
      toBoolean(trivial)
    }

    /* It only makes sense to show 2-ary type constructors infix.
     * By default we do only if it's a symbolic name. */
    override def isShowAsInfixType: Boolean =
      hasLength(args, 2) &&
        sym.getAnnotation(ShowAsInfixAnnotationClass)
         .map(_ booleanArg 0 getOrElse true)
         .getOrElse(!Character.isUnicodeIdentifierStart(sym.decodedName.head))

    private[Types] def invalidateTypeRefCaches(): Unit = {
      parentsCache = null
      parentsPeriod = NoPeriod
      baseTypeSeqCache = null
      baseTypeSeqPeriod = NoPeriod
      normalized = null
    }
    private[reflect] var parentsCache: List[Type]      = _
    private[reflect] var parentsPeriod                 = NoPeriod
    private[reflect] var baseTypeSeqCache: BaseTypeSeq = _
    private[reflect] var baseTypeSeqPeriod             = NoPeriod
    private var normalized: Type                       = _

    //OPT specialize hashCode
    override final def computeHashCode = {
      import scala.util.hashing.MurmurHash3._
      val hasArgs = args ne Nil
      var h = productSeed
      h = mix(h, pre.hashCode)
      h = mix(h, sym.hashCode)
      if (hasArgs)
        finalizeHash(mix(h, args.hashCode()), 3)
      else
        finalizeHash(h, 2)
    }

    // interpret symbol's info in terms of the type's prefix and type args
    protected def relativeInfo: Type = appliedType(sym.info.asSeenFrom(pre, sym.owner), argsOrDummies)

    // @M: propagate actual type params (args) to `tp`, by replacing
    // formal type parameters with actual ones. If tp is higher kinded,
    // the "actual" type arguments are types that simply reference the
    // corresponding type parameters (unbound type variables)
    //
    // NOTE: for performance, as well as correctness, we do not attempt
    // to reframe trivial types in terms of our prefix and args.
    // asSeenFrom, by construction, is the identity for trivial types,
    // and substitution cannot change them either (abstract types are non-trivial, specifically because they may need to be replaced)
    // For correctness, the result for `tp == NoType` must be `NoType`,
    // if we don't shield against this, and apply instantiateTypeParams to it,
    // this would result in an ErrorType, which behaves differently during subtyping
    // (and thus on recursion, subtyping would go from false -- since a NoType is involved --
    //  to true, as ErrorType is always a sub/super type....)
    final def relativize(tp: Type): Type =
      if (tp.isTrivial) tp
      else if (args.isEmpty && (phase.erasedTypes || !isHigherKinded || isRawIfWithoutArgs(sym))) tp.asSeenFrom(pre, sym.owner)
      else {
        // The type params and type args should always match in length,
        // though a mismatch can arise when a typevar is encountered for which
        // too little information is known to determine its kind, and
        // it later turns out not to have kind *. See SI-4070.
        val formals = sym.typeParams

        // If we're called with a poly type, and we were to run the `asSeenFrom`, over the entire
        // type, we can end up with new symbols for the type parameters (clones from TypeMap).
        // The subsequent substitution of type arguments would fail. This problem showed up during
        // the fix for SI-8046, however the solution taken there wasn't quite right, and led to
        // SI-8170.
        //
        // Now, we detect the PolyType before both the ASF *and* the substitution, and just operate
        // on the result type.
        //
        // TODO: Revisit this and explore the questions raised:
        //
        //  AM: I like this better than the old code, but is there any way the tparams would need the ASF treatment as well?
        //  JZ: I think its largely irrelevant, as they are no longer referred to in the result type.
        //      In fact, you can get away with returning a type of kind * here and the sky doesn't fall:
        //        `case PolyType(`tparams`, result) => asSeenFromInstantiated(result)`
        //      But I thought it was better to retain the kind.
        //  AM: I've been experimenting with apply-type-args-then-ASF, but running into cycles.
        //      In general, it seems iffy the tparams can never occur in the result
        //      then we might as well represent the type as a no-arg typeref.
        //  AM: I've also been trying to track down uses of transform (pretty generic name for something that
        //      does not seem that widely applicable).
        //      It's kind of a helper for computing baseType (since it tries to propagate our type args to some
        //      other type, which has to be related to this type for that to make sense).
        //
        def seenFromOwnerInstantiated(tp: Type): Type =
          tp.asSeenFrom(pre, sym.owner).instantiateTypeParams(formals, argsOrDummies)

        tp match {
          case PolyType(`formals`, result) => PolyType(formals, seenFromOwnerInstantiated(result))
          case _ => seenFromOwnerInstantiated(tp)
        }
      }

    private def argsOrDummies = if (args.isEmpty) dummyArgs else args

    final override def baseType(clazz: Symbol): Type =
      if (clazz eq sym) this
      // NOTE: this first goes to requested base type, *then* does asSeenFrom prefix & instantiates args
      else if (sym.isClass) relativize(sym.info.baseType(clazz))
      else baseTypeOfNonClassTypeRef(clazz)

    // two differences with class type basetype:
    // (1) first relativize the type, then go to the requested base type
    // (2) cache for cycle robustness
    private def baseTypeOfNonClassTypeRef(clazz: Symbol) =
      try {
        basetypeRecursions += 1
        if (basetypeRecursions >= LogPendingBaseTypesThreshold) baseTypeOfNonClassTypeRefLogged(clazz)
        else relativeInfo.baseType(clazz)
      } finally basetypeRecursions -= 1

    private def baseTypeOfNonClassTypeRefLogged(clazz: Symbol) =
      if (pendingBaseTypes add this) try relativeInfo.baseType(clazz) finally { pendingBaseTypes remove this }
      // TODO: is this optimization for AnyClass worth it? (or is it playing last-ditch cycle defense?)
      // NOTE: for correctness, it only applies for non-class types
      // (e.g., a package class should not get AnyTpe as its supertype, ever)
      else if (clazz eq AnyClass) AnyTpe
      else NoType

    // eta-expand, subtyping relies on eta-expansion of higher-kinded types
    protected def normalizeImpl: Type = if (isHigherKinded) etaExpand else super.normalize

    // TODO: test case that is compiled in a specific order and in different runs
    final override def normalize: Type = {
      // arises when argument-dependent types are approximated (see def depoly in implicits)
      if (pre eq WildcardType) WildcardType
      else if (phase.erasedTypes) normalizeImpl
      else {
        if (normalized eq null)
          normalized = normalizeImpl
        normalized
      }
    }

    override def isGround = (
         sym.isPackageClass
      || pre.isGround && args.forall(_.isGround)
    )

    final override def etaExpand: Type = {
      // must initialise symbol, see test/files/pos/ticket0137.scala
      val tpars = initializedTypeParams
      if (tpars.isEmpty) this
      else typeFunAnon(tpars, copyTypeRef(this, pre, sym, tpars map (_.tpeHK))) // todo: also beta-reduce?
    }

    // only need to rebind type aliases, as typeRef already handles abstract types
    // (they are allowed to be rebound more liberally)
    def coevolveSym(pre1: Type): Symbol = sym

    def initializedTypeParams     = sym.info.typeParams
    def typeParamsMatchArgs       = sameLength(initializedTypeParams, args)


    override def baseTypeSeqDepth = baseTypeSeq.maxDepth
    override def prefix           = pre
    override def termSymbol       = super.termSymbol
    override def termSymbolDirect = super.termSymbol
    override def typeArgs         = args
    override def typeOfThis       = relativize(sym.typeOfThis)
    override def typeSymbol       = sym
    override def typeSymbolDirect = sym

    override def parents: List[Type] = {
      val cache = parentsCache
      if (parentsPeriod == currentPeriod && cache != null) cache
      else {
        defineParentsOfTypeRef(this)
        parentsCache
      }
    }

    protected[Types] def parentsImpl: List[Type] = sym.info.parents map relativize

    // Since type parameters cannot occur in super types, no need to relativize before looking at base *classes*.
    // Similarly, our prefix can occur in super class types, but it cannot influence which classes those types resolve to.
    // For example, `class Outer { outer => class Inner extends outer.Foo; class Foo }`
    // `outer`'s value has no impact on which `Foo` is selected, since classes cannot be overridden.
    // besides being faster, we can't use relativeInfo because it causes cycles
    override def baseClasses      = sym.info.baseClasses

    // in principle, we should use `relativeInfo.decls`, but I believe all uses of `decls` will correctly `relativize` the individual members
    override def decls: Scope = sym.info.decls

    protected[Types] def baseTypeSeqImpl: BaseTypeSeq =
      if (sym.info.baseTypeSeq exists (_.typeSymbolDirect.isAbstractType))
        // SI-8046 base type sequence might have more elements in a subclass, we can't map it element wise.
        relativize(sym.info).baseTypeSeq
      else
        // Optimization: no abstract types, we can compute the BTS of this TypeRef as an element-wise map
        //               of the BTS of the referenced symbol.
        sym.info.baseTypeSeq map relativize

    override def baseTypeSeq: BaseTypeSeq = {
      val cache = baseTypeSeqCache
      if (baseTypeSeqPeriod == currentPeriod && cache != null && cache != undetBaseTypeSeq)
        cache
      else {
        defineBaseTypeSeqOfTypeRef(this)
        if (baseTypeSeqCache == undetBaseTypeSeq)
          throw new RecoverableCyclicReference(sym)

        baseTypeSeqCache
      }
    }
    // ensure that symbol is not a local copy with a name coincidence
    private def needsPreString = (
         settings.debug
      || !shorthands(sym.fullName)
      || (sym.ownersIterator exists (s => !s.isClass))
    )
    private def preString  = if (needsPreString) pre.prefixString else ""
    private def argsString = if (args.isEmpty) "" else args.mkString("[", ",", "]")

    override def nameAndArgsString = typeSymbol.name.toString + argsString

    private def refinementDecls = fullyInitializeScope(decls) filter (sym => sym.isPossibleInRefinement && sym.isPublic)
    private def refinementString = (
      if (sym.isStructuralRefinement)
        refinementDecls map (_.defString) mkString("{", "; ", "}")
      else ""
    )
    protected def finishPrefix(rest: String) = (
      if (sym.isInitialized && sym.isAnonymousClass && !phase.erasedTypes)
        parentsString(sym.info.parents) + refinementString
      else rest
      )

    private def noArgsString = finishPrefix(preString + sym.nameString)
    private def tupleTypeString: String = args match {
      case Nil        => noArgsString
      case arg :: Nil => s"($arg,)"
      case _          => args.mkString("(", ", ", ")")
    }
    private def infixTypeString: String = {
      /* SLS 3.2.8: all infix types have the same precedence.
       * In A op B op' C, op and op' need the same associativity.
       * Therefore, if op is left associative, anything on its right
       * needs to be parenthesized if it's an infix type, and vice versa. */
      // we should only get here after `isShowInfixType` says we have 2 args
      val l :: r :: Nil = args

      val isRightAssoc = typeSymbol.decodedName endsWith ":"

      val lstr = if (isRightAssoc && l.isShowAsInfixType) s"($l)" else l.toString

      val rstr = if (!isRightAssoc && r.isShowAsInfixType) s"($r)" else r.toString

      s"$lstr ${sym.decodedName} $rstr"
    }
    private def customToString = sym match {
      case RepeatedParamClass | JavaRepeatedParamClass => args.head + "*"
      case ByNameParamClass   => "=> " + args.head
      case _                  =>
        if (isFunctionTypeDirect(this)) {
          // Aesthetics: printing Function1 as T => R rather than (T) => R
          // ...but only if it's not a tuple, so ((T1, T2)) => R is distinguishable
          // from (T1, T2) => R.
          unspecializedTypeArgs(this) match {
            // See neg/t588 for an example which arrives here - printing
            // the type of a Function1 after erasure.
            case Nil => noArgsString
            case in :: out :: Nil if !isTupleTypeDirect(in) =>
              // A => B => C should be (A => B) => C or A => (B => C).
              // Also if A is byname, then we want (=> A) => B because => is right associative and => A => B
              // would mean => (A => B) which is a different type
              val in_s  = if (isFunctionTypeDirect(in) || isByNameParamType(in)) "(" + in + ")" else "" + in
              val out_s = if (isFunctionTypeDirect(out)) "(" + out + ")" else "" + out
              in_s + " => " + out_s
            case xs =>
              xs.init.mkString("(", ", ", ")") + " => " + xs.last
          }
        }
        else if (isShowAsInfixType)
          infixTypeString
        else if (isTupleTypeDirect(this))
          tupleTypeString
        else if (sym.isAliasType && prefixChain.exists(_.termSymbol.isSynthetic) && (this ne dealias))
          "" + dealias
        else
          ""
    }
    override def safeToString = {
      val custom = if (settings.debug) "" else customToString
      if (custom != "") custom
      else finishPrefix(preString + sym.nameString + argsString)
    }
    override def prefixString = "" + (
      if (settings.debug)
        super.prefixString
      else if (sym.isOmittablePrefix)
        ""
      else if (sym.isPackageClass || sym.isPackageObjectOrClass)
        sym.skipPackageObject.fullName + "."
      else if (isStable && nme.isSingletonName(sym.name))
        tpnme.dropSingletonName(sym.name) + "."
      else
        super.prefixString
    )
    // Suppressing case class copy method which risks subverting our single point of creation.
    private def copy = null
    override def kind = "TypeRef"
  }

  // No longer defined as anonymous classes in `object TypeRef` to avoid an unnecessary outer pointer.
  private final class AliasArgsTypeRef(pre: Type, sym: Symbol, args: List[Type]) extends ArgsTypeRef(pre, sym, args) with AliasTypeRef
  private final class AbstractArgsTypeRef(pre: Type, sym: Symbol, args: List[Type]) extends ArgsTypeRef(pre, sym, args) with AbstractTypeRef
  private final class ClassArgsTypeRef(pre: Type, sym: Symbol, args: List[Type]) extends ArgsTypeRef(pre, sym, args)
  private final class AliasNoArgsTypeRef(pre: Type, sym: Symbol) extends NoArgsTypeRef(pre, sym) with AliasTypeRef
  private final class AbstractNoArgsTypeRef(pre: Type, sym: Symbol) extends NoArgsTypeRef(pre, sym) with AbstractTypeRef
  private final class ClassNoArgsTypeRef(pre: Type, sym: Symbol) extends NoArgsTypeRef(pre, sym)

  object TypeRef extends TypeRefExtractor {
    def apply(pre: Type, sym: Symbol, args: List[Type]): Type = unique({
      if (args ne Nil) {
        if (sym.isAliasType)              new AliasArgsTypeRef(pre, sym, args)
        else if (sym.isAbstractType)      new AbstractArgsTypeRef(pre, sym, args)
        else                              new ClassArgsTypeRef(pre, sym, args)
      }
      else {
        if (sym.isAliasType)              new AliasNoArgsTypeRef(pre, sym)
        else if (sym.isAbstractType)      new AbstractNoArgsTypeRef(pre, sym)
        else if (sym.isRefinementClass)   new RefinementTypeRef(pre, sym)
        else if (sym.isPackageClass)      new PackageTypeRef(pre, sym)
        else if (sym.isModuleClass)       new ModuleTypeRef(pre, sym)
        else                              new ClassNoArgsTypeRef(pre, sym)
      }
    })
  }

  protected def defineParentsOfTypeRef(tpe: TypeRef) = {
    val period = tpe.parentsPeriod
    if (period != currentPeriod) {
      tpe.parentsPeriod = currentPeriod
      if (!isValidForBaseClasses(period)) {
        tpe.parentsCache = tpe.parentsImpl
      } else if (tpe.parentsCache == null) { // seems this can happen if things are corrupted enough, see #2641
        tpe.parentsCache = List(AnyTpe)
      }
    }
  }

  protected def defineBaseTypeSeqOfTypeRef(tpe: TypeRef) = {
    val period = tpe.baseTypeSeqPeriod
    if (period != currentPeriod) {
      tpe.baseTypeSeqPeriod = currentPeriod
      if (!isValidForBaseClasses(period)) {
        if (Statistics.canEnable) Statistics.incCounter(typerefBaseTypeSeqCount)
        val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, baseTypeSeqNanos) else null
        try {
          tpe.baseTypeSeqCache = undetBaseTypeSeq
          tpe.baseTypeSeqCache = tpe.baseTypeSeqImpl
        } finally {
          if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
        }
      }
    }
    if (tpe.baseTypeSeqCache == undetBaseTypeSeq)
      throw new TypeError("illegal cyclic inheritance involving " + tpe.sym)
  }

  /** A class representing a method type with parameters.
   *  Note that a parameterless method is represented by a NullaryMethodType:
   *
   *    def m(): Int        MethodType(Nil, Int)
   *    def m: Int          NullaryMethodType(Int)
   */
  case class MethodType(override val params: List[Symbol],
                        override val resultType: Type) extends Type with MethodTypeApi {

    private var trivial: ThreeValue = UNKNOWN
    override def isTrivial: Boolean = {
      if (trivial == UNKNOWN) trivial = fromBoolean(isTrivialResult && areTrivialParams(params))
      toBoolean(trivial)
    }

    private def isTrivialResult =
      resultType.isTrivial && (resultType eq resultType.withoutAnnotations)

    private def areTrivialParams(ps: List[Symbol]): Boolean = ps match {
      case p :: rest =>
        p.tpe.isTrivial && !typesContain(paramTypes, p) && !(resultType contains p) &&
        areTrivialParams(rest)
      case _ =>
        true
    }

    def isImplicit = (params ne Nil) && params.head.isImplicit
    def isJava = false // can we do something like for implicits? I.e. do Java methods without parameters need to be recognized?

    override def paramSectionCount: Int = resultType.paramSectionCount + 1

    override def paramss: List[List[Symbol]] = params :: resultType.paramss

    override def paramTypes = mapList(params)(symTpe) // OPT use mapList rather than .map

    override def boundSyms = resultType.boundSyms ++ params

    override def resultType(actuals: List[Type]) =
      if (isTrivial || phase.erasedTypes) resultType
      else if (/*isDependentMethodType &&*/ sameLength(actuals, params)) {
        val idm = new InstantiateDependentMap(params, actuals)
        val res = idm(resultType)
        existentialAbstraction(idm.existentialsNeeded, res)
      }
      else existentialAbstraction(params, resultType)

    private var isdepmeth: ThreeValue = UNKNOWN
    override def isDependentMethodType: Boolean = {
      if (isdepmeth == UNKNOWN) isdepmeth = fromBoolean(IsDependentCollector.collect(resultType.dealias))
      toBoolean(isdepmeth)
    }

    // implicit args can only be depended on in result type:
    //TODO this may be generalised so that the only constraint is dependencies are acyclic
    def approximate: MethodType = MethodType(params, resultApprox)

    override def safeToString = paramString(this) + resultType

    override def cloneInfo(owner: Symbol) = {
      val vparams = cloneSymbolsAtOwner(params, owner)
      copyMethodType(this, vparams, resultType.substSym(params, vparams).cloneInfo(owner))
    }

    override def atOwner(owner: Symbol) =
      if (!allSymbolsHaveOwner(params, owner) || (resultType.atOwner(owner) ne resultType))
        cloneInfo(owner)
      else
        this

    override def kind = "MethodType"
  }

  object MethodType extends MethodTypeExtractor

  class JavaMethodType(ps: List[Symbol], rt: Type) extends MethodType(ps, rt) {
    override def isJava = true
  }

  // TODO: rename so it's more appropriate for the type that is for a method without argument lists
  // ("nullary" erroneously implies it has an argument list with zero arguments, it actually has zero argument lists)
  case class NullaryMethodType(override val resultType: Type) extends Type with NullaryMethodTypeApi {
    override def isTrivial = resultType.isTrivial && (resultType eq resultType.withoutAnnotations)
    override def prefix: Type = resultType.prefix
    override def narrow: Type = resultType.narrow
    override def termSymbol: Symbol = resultType.termSymbol
    override def typeSymbol: Symbol = resultType.typeSymbol
    override def parents: List[Type] = resultType.parents
    override def decls: Scope = resultType.decls
    override def baseTypeSeq: BaseTypeSeq = resultType.baseTypeSeq
    override def baseTypeSeqDepth: Depth = resultType.baseTypeSeqDepth
    override def baseClasses: List[Symbol] = resultType.baseClasses
    override def baseType(clazz: Symbol): Type = resultType.baseType(clazz)
    override def boundSyms = resultType.boundSyms
    override def safeToString: String = "=> "+ resultType
    override def kind = "NullaryMethodType"
  }

  object NullaryMethodType extends NullaryMethodTypeExtractor

  /** A type function or the type of a polymorphic value (and thus of kind *).
   *
   * Before the introduction of NullaryMethodType, a polymorphic nullary method (e.g, def isInstanceOf[T]: Boolean)
   * used to be typed as PolyType(tps, restpe), and a monomorphic one as PolyType(Nil, restpe)
   * This is now: PolyType(tps, NullaryMethodType(restpe)) and NullaryMethodType(restpe)
   * by symmetry to MethodTypes: PolyType(tps, MethodType(params, restpe)) and MethodType(params, restpe)
   *
   * Thus, a PolyType(tps, TypeRef(...)) unambiguously indicates a type function (which results from eta-expanding a type constructor alias).
   * Similarly, PolyType(tps, ClassInfoType(...)) is a type constructor.
   *
   * A polytype is of kind * iff its resultType is a (nullary) method type.
   */
  case class PolyType(override val typeParams: List[Symbol], override val resultType: Type)
       extends Type with PolyTypeApi {
    //assert(!(typeParams contains NoSymbol), this)
    assert(typeParams.nonEmpty, this) // used to be a marker for nullary method type, illegal now (see @NullaryMethodType)

    override def paramSectionCount: Int = resultType.paramSectionCount
    override def paramss: List[List[Symbol]] = resultType.paramss
    override def params: List[Symbol] = resultType.params
    override def paramTypes: List[Type] = resultType.paramTypes
    override def parents: List[Type] = resultType.parents
    override def decls: Scope = resultType.decls
    override def termSymbol: Symbol = resultType.termSymbol
    override def typeSymbol: Symbol = resultType.typeSymbol
    override def boundSyms = immutable.Set[Symbol](typeParams ++ resultType.boundSyms: _*)
    override def prefix: Type = resultType.prefix
    override def baseTypeSeq: BaseTypeSeq = resultType.baseTypeSeq
    override def baseTypeSeqDepth: Depth = resultType.baseTypeSeqDepth
    override def baseClasses: List[Symbol] = resultType.baseClasses
    override def baseType(clazz: Symbol): Type = resultType.baseType(clazz)
    override def narrow: Type = resultType.narrow

    // SI-9475: PolyTypes with dependent method types are still dependent
    override def isDependentMethodType = resultType.isDependentMethodType

    /** @M: typeDefSig wraps a TypeBounds in a PolyType
     *  to represent a higher-kinded type parameter
     *  wrap lo&hi in polytypes to bind variables
     */
    override def bounds: TypeBounds =
      TypeBounds(typeFun(typeParams, resultType.bounds.lo),
                 typeFun(typeParams, resultType.bounds.hi))

    override def isHigherKinded = !typeParams.isEmpty

    override def safeToString = typeParamsString(this) + resultType

    override def cloneInfo(owner: Symbol) = {
      val tparams = cloneSymbolsAtOwner(typeParams, owner)
      PolyType(tparams, resultType.substSym(typeParams, tparams).cloneInfo(owner))
    }

    override def atOwner(owner: Symbol) =
      if (!allSymbolsHaveOwner(typeParams, owner) || (resultType.atOwner(owner) ne resultType))
        cloneInfo(owner)
      else
        this

    override def kind = "PolyType"
  }

  object PolyType extends PolyTypeExtractor

  /** A creator for existential types which flattens nested existentials.
   */
  def newExistentialType(quantified: List[Symbol], underlying: Type): Type =
    if (quantified.isEmpty) underlying
    else underlying match {
      case ExistentialType(qs, restpe) => newExistentialType(quantified ::: qs, restpe)
      case _                           => ExistentialType(quantified, underlying)
    }

  case class ExistentialType(quantified: List[Symbol],
                             override val underlying: Type) extends RewrappingTypeProxy with ExistentialTypeApi
  {
    override protected def rewrap(newtp: Type) = existentialAbstraction(quantified, newtp)

    override def isTrivial = false
    override def bounds = TypeBounds(maybeRewrap(underlying.bounds.lo), maybeRewrap(underlying.bounds.hi))
    override def parents = underlying.parents map maybeRewrap
    override def boundSyms = quantified.toSet
    override def prefix = maybeRewrap(underlying.prefix)
    override def typeArgs = underlying.typeArgs map maybeRewrap
    override def params = underlying.params mapConserve { param =>
      val tpe1 = rewrap(param.tpeHK)
      if (tpe1 eq param.tpeHK) param else param.cloneSymbol.setInfo(tpe1)
    }
    override def paramTypes = underlying.paramTypes map maybeRewrap
    override def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]) = {
//      maybeRewrap(underlying.instantiateTypeParams(formals, actuals))

      val quantified1 = new SubstTypeMap(formals, actuals) mapOver quantified
      val underlying1 = underlying.instantiateTypeParams(formals, actuals)
      if ((quantified1 eq quantified) && (underlying1 eq underlying)) this
      else existentialAbstraction(quantified1, underlying1.substSym(quantified, quantified1))

    }
    override def baseType(clazz: Symbol) = maybeRewrap(underlying.baseType(clazz))
    override def baseTypeSeq = underlying.baseTypeSeq map maybeRewrap
    override def isHigherKinded = false

    // TODO: check invariant that all quantifiers have the same (existing) owner
    private def quantifierOwner = quantified collectFirst { case q if q.owner.exists => q.owner } getOrElse NoSymbol

    // Is this existential of the form: T[Q1, ..., QN] forSome { type Q1 >: L1 <: U1, ..., QN >: LN <: UN}
    private def isStraightApplication = (quantified corresponds underlying.typeArgs){ (q, a) => q.tpe =:= a }

    /** [SI-6169, SI-8197 -- companion to SI-1786]
     *
     * Approximation to improve the bounds of a Java-defined existential type,
     * based on the bounds of the type parameters of the quantified type
     * In Scala syntax, given a java-defined class C[T <: String], the existential type C[_]
     * is improved to C[_ <: String] before skolemization, which captures (get it?) what Java does:
     * enter the type parameters' bounds into the context when checking subtyping/type equality of existential types
     *
     * Also tried doing this once during class file parsing or when creating the existential type,
     * but that causes cyclic errors because it happens too early.
     *
     * NOTE: we're only modifying the skolems to avoid leaking the sharper bounds to `quantified` (SI-8283)
     *
     * TODO: figure out how to do this earlier without running into cycles, so this can subsume the fix for SI-1786
     */
    override def skolemizeExistential(owner0: Symbol, origin: AnyRef) = {
      val owner = owner0 orElse quantifierOwner

      // do this here because it's quite close to what Java does:
      // when checking subtyping/type equality, enter constraints
      // derived from the existentially quantified type into the typing environment
      // (aka \Gamma, which tracks types for variables and constraints/kinds for types)
      // as a nice bonus, delaying this until we need it avoids cyclic errors
      def tpars = underlying.typeSymbolDirect.initialize.typeParams

      def newSkolem(quant: Symbol) = owner.newExistentialSkolem(quant, origin)
      def newSharpenedSkolem(quant: Symbol, tparam: Symbol): Symbol = {
        def emptyBounds(sym: Symbol) = sym.info.bounds.isEmptyBounds

        // avoid creating cycles [pos/t2940] that consist of an existential quantifier's
        // bounded by an existential type that unhygienically has that quantifier as its own quantifier
        // (TODO: clone latter existential with fresh quantifiers -- not covering this case for now)
        val canSharpen = (
             emptyBounds(quant) && !emptyBounds(tparam)
          && (existentialsInType(tparam.info) intersect quantified).isEmpty
        )

        val skolemInfo = if (!canSharpen) quant.info else tparam.info.substSym(tpars, quantified)

        owner.newExistentialSkolem(quant.name.toTypeName, skolemInfo, quant.flags, quant.pos, origin)
      }

      val canSharpenBounds = (underlying.typeSymbol.isJavaDefined || sharperSkolems) && isStraightApplication

      if (canSharpenBounds) deriveType2(quantified, tpars, newSharpenedSkolem)(underlying)
      else deriveType(quantified, newSkolem)(underlying)
    }

    private def wildcardArgsString(qset: Set[Symbol], args: List[Type]): List[String] = args map {
      case TypeRef(_, sym, _) if (qset contains sym) =>
        "_"+sym.infoString(sym.info)
      case arg =>
        arg.toString
    }

    override def nameAndArgsString: String = underlying match {
      case TypeRef(_, sym, args) if !settings.debug && isRepresentableWithWildcards =>
        sym.name + wildcardArgsString(quantified.toSet, args).mkString("[", ",", "]")
      case TypeRef(_, sym, args) =>
        sym.name + args.mkString("[", ",", "]") + existentialClauses
      case _ => underlying.typeSymbol.name + existentialClauses
    }

    private def existentialClauses = {
      val str = quantified map (_.existentialToString) mkString (" forSome { ", "; ", " }")
      if (settings.explaintypes) "(" + str + ")" else str
    }

    /** An existential can only be printed with wildcards if:
     *   - the underlying type is a typeref
     *   - every quantified variable appears at most once as a type argument and
     *     nowhere inside a type argument
     *   - no quantified type argument contains a quantified variable in its bound
     *   - the typeref's symbol is not itself quantified
     *   - the prefix is not quantified
     */
    def isRepresentableWithWildcards = {
      val qset = quantified.toSet
      underlying match {
        case _: RefinementTypeRef => false
        case TypeRef(pre, sym, args) =>
          def isQuantified(tpe: Type): Boolean = {
            (tpe exists (t => qset contains t.typeSymbol)) ||
            tpe.typeSymbol.isRefinementClass && (tpe.parents exists isQuantified)
          }
          val (wildcardArgs, otherArgs) = args partition (arg => qset contains arg.typeSymbol)
          wildcardArgs.toSet.size == wildcardArgs.size &&
          !(otherArgs exists (arg => isQuantified(arg))) &&
          !(wildcardArgs exists (arg => isQuantified(arg.typeSymbol.info.bounds))) &&
          !(qset contains sym) &&
          !isQuantified(pre)
        case _ => false
    }
    }

    override def safeToString: String = {
      underlying match {
        case TypeRef(pre, sym, args) if !settings.debug && isRepresentableWithWildcards =>
          "" + TypeRef(pre, sym, Nil) + wildcardArgsString(quantified.toSet, args).mkString("[", ", ", "]")
        case MethodType(_, _) | NullaryMethodType(_) | PolyType(_, _) =>
          "(" + underlying + ")" + existentialClauses
        case _ =>
          "" + underlying + existentialClauses
      }
    }

    override def cloneInfo(owner: Symbol) =
      createFromClonedSymbolsAtOwner(quantified, owner, underlying)(newExistentialType)

    override def atOwner(owner: Symbol) =
      if (!allSymbolsHaveOwner(quantified, owner)) cloneInfo(owner) else this

    override def kind = "ExistentialType"

    def withTypeVars(op: Type => Boolean): Boolean = withTypeVars(op, AnyDepth)

    def withTypeVars(op: Type => Boolean, depth: Depth): Boolean = {
      val quantifiedFresh = cloneSymbols(quantified)
      val tvars = quantifiedFresh map (tparam => TypeVar(tparam))
      val underlying1 = underlying.instantiateTypeParams(quantified, tvars) // fuse subst quantified -> quantifiedFresh -> tvars
      op(underlying1) && {
        solve(tvars, quantifiedFresh, quantifiedFresh map (_ => Invariant), upper = false, depth) &&
        isWithinBounds(NoPrefix, NoSymbol, quantifiedFresh, tvars map (_.inst))
      }
    }
  }

  object ExistentialType extends ExistentialTypeExtractor

  /** A class containing the alternatives and type prefix of an overloaded symbol.
   *  Not used after phase `typer`.
   */
  case class OverloadedType(pre: Type, alternatives: List[Symbol]) extends Type {
    override def prefix: Type = pre
    override def safeToString =
      (alternatives map pre.memberType).mkString("", " <and> ", "")
    override def kind = "OverloadedType"
  }

  /** The canonical creator for OverloadedTypes.
   */
  def overloadedType(pre: Type, alternatives: List[Symbol]): Type = alternatives match {
    case Nil        => NoType
    case alt :: Nil => pre memberType alt
    case _          => OverloadedType(pre, alternatives)
  }

  case class ImportType(expr: Tree) extends Type {
    override def safeToString = "ImportType("+expr+")"
  }

  /** A class remembering a type instantiation for some a set of overloaded
   *  polymorphic symbols.
   *  Not used after phase `typer`.
   */
  case class AntiPolyType(pre: Type, targs: List[Type]) extends Type {
    override def safeToString =
      pre.toString + targs.mkString("(with type arguments ", ", ", ")")

    override def memberType(sym: Symbol) = appliedType(pre.memberType(sym), targs)
    override def kind = "AntiPolyType"
  }

  object HasTypeMember {
    def apply(name: TypeName, tp: Type): Type = {
      val bound = refinedType(List(WildcardType), NoSymbol)
      val bsym = bound.typeSymbol.newAliasType(name)
      bsym setInfo tp
      bound.decls enter bsym
      bound
    }
    def unapply(tp: Type): Option[(TypeName, Type)] = tp match {
      case RefinedType(List(WildcardType), Scope(sym)) => Some((sym.name.toTypeName, sym.info))
      case _ => None
    }
  }

  object ArrayTypeRef {
    def unapply(tp: Type) = tp match {
      case TypeRef(_, ArrayClass, arg :: Nil) => Some(arg)
      case _                                  => None
    }
  }

  //@M
  // a TypeVar used to be a case class with only an origin and a constr
  // then, constr became mutable (to support UndoLog, I guess),
  // but pattern-matching returned the original constr0 (a bug)
  // now, pattern-matching returns the most recent constr
  object TypeVar {
    @inline final def trace[T](action: String, msg: => String)(value: T): T = {
      // Uncomment the following for a compiler that has some diagnostics about type inference
      // I doubt this is ever useful in the wild, so a recompile will be needed
//    val s = msg match {
//      case ""   => ""
//      case str  => "( " + str + " )"
//    }
//    Console.err.println("[%10s] %-25s%s".format(action, value, s))
      value
    }

    /** Create a new TypeConstraint based on the given symbol.
     */
    private def deriveConstraint(tparam: Symbol): TypeConstraint = {
      /** Must force the type parameter's info at this point
       *  or things don't end well for higher-order type params.
       *  See SI-5359.
       */
      val bounds  = tparam.info.bounds
      /* We can seed the type constraint with the type parameter
       * bounds as long as the types are concrete.  This should lower
       * the complexity of the search even if it doesn't improve
       * any results.
       */
      if (propagateParameterBoundsToTypeVars) {
        val exclude = bounds.isEmptyBounds || (bounds exists typeIsNonClassType)

        if (exclude) new TypeConstraint
        else TypeVar.trace("constraint", "For " + tparam.fullLocationString)(
          new TypeConstraint(bounds)
        )
      }
      else new TypeConstraint
    }
    def untouchable(tparam: Symbol): TypeVar                 = createTypeVar(tparam, untouchable = true)
    def apply(tparam: Symbol): TypeVar                       = createTypeVar(tparam, untouchable = false)
    def apply(origin: Type, constr: TypeConstraint): TypeVar = apply(origin, constr, Nil, Nil)
    def apply(origin: Type, constr: TypeConstraint, args: List[Type], params: List[Symbol]): TypeVar =
      createTypeVar(origin, constr, args, params, untouchable = false)

    /** This is the only place TypeVars should be instantiated.
     */
    private def createTypeVar(origin: Type, constr: TypeConstraint, args: List[Type], params: List[Symbol], untouchable: Boolean): TypeVar = {
      val tv = (
        if (args.isEmpty && params.isEmpty) {
          if (untouchable) new TypeVar(origin, constr) with UntouchableTypeVar
          else new TypeVar(origin, constr) {}
        }
        else if (args.size == params.size) {
          if (untouchable) new AppliedTypeVar(origin, constr, params zip args) with UntouchableTypeVar
          else new AppliedTypeVar(origin, constr, params zip args)
        }
        else if (args.isEmpty) {
          if (untouchable) new HKTypeVar(origin, constr, params) with UntouchableTypeVar
          else new HKTypeVar(origin, constr, params)
        }
        else throw new Error("Invalid TypeVar construction: " + ((origin, constr, args, params)))
      )

      trace("create", "In " + tv.originLocation)(
        tv
      )
    }
    private def createTypeVar(tparam: Symbol, untouchable: Boolean): TypeVar =
      createTypeVar(tparam.tpeHK, deriveConstraint(tparam), Nil, tparam.typeParams, untouchable)
  }

  /** Precondition: params.nonEmpty.  (args.nonEmpty enforced structurally.)
   */
  class HKTypeVar(
    _origin: Type,
    _constr: TypeConstraint,
    override val params: List[Symbol]
  ) extends TypeVar(_origin, _constr) {

    require(params.nonEmpty, this)
    override def isHigherKinded          = true
  }

  /** Precondition: zipped params/args nonEmpty.  (Size equivalence enforced structurally.)
   */
  class AppliedTypeVar(
    _origin: Type,
    _constr: TypeConstraint,
    zippedArgs: List[(Symbol, Type)]
  ) extends TypeVar(_origin, _constr) {

    require(zippedArgs.nonEmpty, this)

    override def params: List[Symbol] = zippedArgs map (_._1)
    override def typeArgs: List[Type] = zippedArgs map (_._2)

    override def safeToString: String = super.safeToString + typeArgs.map(_.safeToString).mkString("[", ", ", "]")
  }

  trait UntouchableTypeVar extends TypeVar {
    override def untouchable = true
    override def isGround = true
    override def registerTypeEquality(tp: Type, typeVarLHS: Boolean) = tp match {
      case t: TypeVar if !t.untouchable =>
        t.registerTypeEquality(this, !typeVarLHS)
      case _ =>
        super.registerTypeEquality(tp, typeVarLHS)
    }
    override def registerBound(tp: Type, isLowerBound: Boolean, isNumericBound: Boolean = false): Boolean = tp match {
      case t: TypeVar if !t.untouchable =>
        t.registerBound(this, !isLowerBound, isNumericBound)
      case _ =>
        super.registerBound(tp, isLowerBound, isNumericBound)
    }
  }

  /** A class representing a type variable: not used after phase `typer`.
   *
   *  A higher-kinded TypeVar has params (Symbols) and typeArgs (Types).
   *  A TypeVar with nonEmpty typeArgs can only be instantiated by a higher-kinded
   *  type that can be applied to those args.  A TypeVar is much like a TypeRef,
   *  except it has special logic for equality and subtyping.
   *
   *  Precondition for this class, enforced structurally: args.isEmpty && params.isEmpty.
   */
  abstract case class TypeVar(
                               origin: Type,
    var constr: TypeConstraint
  ) extends Type {

    // We don't want case class equality/hashing as TypeVar-s are mutable,
    // and TypeRefs based on them get wrongly `uniqued` otherwise. See SI-7226.
    override def hashCode(): Int = System.identityHashCode(this)
    override def equals(other: Any): Boolean = this eq other.asInstanceOf[AnyRef]

    def untouchable = false   // by other typevars
    override def params: List[Symbol] = Nil
    override def typeArgs: List[Type] = Nil
    override def isHigherKinded = false

    /** The constraint associated with the variable
     *  Syncnote: Type variables are assumed to be used from only one
     *  thread. They are not exposed in api.Types and are used only locally
     *  in operations that are exposed from types. Hence, no syncing of `constr`
     *  or `encounteredHigherLevel` or `suspended` accesses should be necessary.
     */
    def instValid = constr.instValid
    def inst = constr.inst
    def instWithinBounds = constr.instWithinBounds
    override def isGround = instValid && inst.isGround

    /** The variable's skolemization level */
    val level = skolemizationLevel

    /** Applies this TypeVar to type arguments, if arity matches.
     *
     * Different applications of the same type constructor variable `?CC`,
     * e.g. `?CC[Int]` and `?CC[String]`, are modeled as distinct instances of `TypeVar`
     * that share a `TypeConstraint`, so that the comparisons `?CC[Int] <:< List[Int]`
     * and `?CC[String] <:< Iterable[String]` result in `?CC` being upper-bounded by `List` and `Iterable`.
     *
     * Applying the wrong number of type args results in a TypeVar whose instance is set to `ErrorType`.
     */
    def applyArgs(newArgs: List[Type]): TypeVar = (
      if (newArgs.isEmpty && typeArgs.isEmpty)
        this
      else if (newArgs.size == params.size) {
        val tv = TypeVar(origin, constr, newArgs, params)
        tv.linkSuspended(this)
        TypeVar.trace("applyArgs", s"In $originLocation, apply args ${newArgs.mkString(", ")} to $originName")(
          tv
        )
      }
      else
        TypeVar(typeSymbol).setInst(ErrorType)
    )
    // newArgs.length may differ from args.length (could've been empty before)
    //
    // !!! @PP - I need an example of this, since this exception never triggers
    // even though I am requiring the size match.
    //
    // example: when making new typevars, you start out with C[A], then you replace C by ?C, which should yield ?C[A], then A by ?A, ?C[?A]
    // we need to track a TypeVar's arguments, and map over them (see TypeMap::mapOver)
    // TypeVars get applied to different arguments over time (in asSeenFrom)
     // -- see pos/tcpoly_infer_implicit_tuplewrapper.scala
    // thus: make new TypeVar's for every application of a TV to args,
    // inference may generate several TypeVar's for a single type parameter that must be inferred,
    // only one of them is in the set of tvars that need to be solved, but
    // they share the same TypeConstraint instance

    // <region name="constraint mutators + undoLog">
    // invariant: before mutating constr, save old state in undoLog
    // (undoLog is used to reset constraints to avoid piling up unrelated ones)
    def setInst(tp: Type): this.type =
      if (tp ne this) {
        undoLog record this
        constr.inst = TypeVar.trace("setInst", s"In $originLocation, $originName=$tp")(
          tp
        )
        this
      } else {
        log(s"TypeVar cycle: called setInst passing $this to itself.")
        this
      }

    def addLoBound(tp: Type, isNumericBound: Boolean = false) {
      assert(tp != this, tp) // implies there is a cycle somewhere (?)
      //println("addLoBound: "+(safeToString, debugString(tp))) //DEBUG
      if (!sharesConstraints(tp)) {
        undoLog record this
        constr.addLoBound(tp, isNumericBound)
      }
    }

    def addHiBound(tp: Type, isNumericBound: Boolean = false) {
      // assert(tp != this)
      //println("addHiBound: "+(safeToString, debugString(tp))) //DEBUG
      if (!sharesConstraints(tp)) {
        undoLog record this
        constr.addHiBound(tp, isNumericBound)
      }
    }
    // </region>

    // ignore subtyping&equality checks while true -- see findMember
    // OPT: This could be Either[TypeVar, Boolean], but this encoding was chosen instead to save allocations.
    private var _suspended: Type = ConstantFalse
    private[Types] def suspended: Boolean = (_suspended: @unchecked) match {
      case ConstantFalse => false
      case ConstantTrue  => true
      case tv: TypeVar   => tv.suspended
    }

    /** `AppliedTypeVar`s share the same `TypeConstraint` with the `HKTypeVar` that it was spawned from.
     *   A type inference session can also have more than one ATV.
     *   If we don't detect that, we end up with "cyclic constraint" when we try to instantiate type parameters
     *   after solving in, pos/t8237
     */
    protected final def sharesConstraints(other: Type): Boolean = other match {
      case other: TypeVar => constr == other.constr // SI-8237 avoid cycles. Details in pos/t8237.scala
      case _ => false
    }
    private[Types] def suspended_=(b: Boolean): Unit = _suspended = if (b) ConstantTrue else ConstantFalse
    // SI-7785 Link the suspended attribute of a TypeVar created in, say, a TypeMap (e.g. AsSeenFrom) to its originator
    private[Types] def linkSuspended(origin: TypeVar): Unit = _suspended = origin

    /** Called when a TypeVar is involved in a subtyping check.  Result is whether
     *  this TypeVar could plausibly be a [super/sub]type of argument `tp` and if so,
     *  tracks tp as a [lower/upper] bound of this TypeVar.
     *
     *  if (isLowerBound)   this typevar could be a subtype, track tp as a lower bound
     *  if (!isLowerBound)  this typevar could be a supertype, track tp as an upper bound
     *
     *  If isNumericBound is true, the subtype check is performed with weak_<:< instead of <:<.
     */
    def registerBound(tp: Type, isLowerBound: Boolean, isNumericBound: Boolean = false): Boolean = {
      // println("regBound: "+(safeToString, debugString(tp), isLowerBound)) //@MDEBUG
      if (isLowerBound)
        assert(tp != this)

      // side effect: adds the type to upper or lower bounds
      def addBound(tp: Type) {
        if (isLowerBound) addLoBound(tp, isNumericBound)
        else addHiBound(tp, isNumericBound)
      }
      // swaps the arguments if it's an upper bound
      def checkSubtype(tp1: Type, tp2: Type) = {
        val lhs = if (isLowerBound) tp1 else tp2
        val rhs = if (isLowerBound) tp2 else tp1

        if (isNumericBound) lhs weak_<:< rhs
        else lhs <:< rhs
      }

      /*  Simple case: type arguments can be ignored, because either this typevar has
       *  no type parameters, or we are comparing to Any/Nothing.
       *
       *  The latter condition is needed because HK unification is limited to constraints of the shape
       *  {{{
       *    TC1[T1,..., TN] <: TC2[T'1,...,T'N]
       *  }}}
       *  which would preclude the following important constraints:
       *  {{{
       *    Nothing <: ?TC[?T]
       *    ?TC[?T] <: Any
       *  }}}
       */
      def unifySimple = {
        val sym = tp.typeSymbol
        if (sym == NothingClass || sym == AnyClass) { // kind-polymorphic
          // SI-7126 if we register some type alias `T=Any`, we can later end
          // with malformed types like `T[T]` during type inference in
          // `handlePolymorphicCall`. No such problem if we register `Any`.
          addBound(sym.tpe)
          true
        } else if (params.isEmpty) {
          addBound(tp)
          true
        } else false
      }

      /*  Full case: involving a check of the form
       *  {{{
       *    TC1[T1,..., TN] <: TC2[T'1,...,T'N]
       *  }}}
       *  Checks subtyping of higher-order type vars, and uses variances as defined in the
       *  type parameter we're trying to infer (the result will be sanity-checked later).
       */
      def unifyFull(tpe: Type): Boolean = {
        def unifySpecific(tp: Type) = {
          val tpTypeArgs = tp.typeArgs
          val arityDelta = compareLengths(typeArgs, tpTypeArgs)
          if (arityDelta == 0) {
            val lhs = if (isLowerBound) tpTypeArgs else typeArgs
            val rhs = if (isLowerBound) typeArgs else tpTypeArgs
            // This is a higher-kinded type var with same arity as tp.
            // If so (see SI-7517), side effect: adds the type constructor itself as a bound.
            isSubArgs(lhs, rhs, params, AnyDepth) && {addBound(tp.typeConstructor); true}
          } else if (settings.YpartialUnification && arityDelta < 0 && typeArgs.nonEmpty) {
            // Simple algorithm as suggested by Paul Chiusano in the comments on SI-2712
            //
            //   https://issues.scala-lang.org/browse/SI-2712?focusedCommentId=61270
            //
            // Treat the type constructor as curried and partially applied, we treat a prefix
            // as constants and solve for the suffix. For the example in the ticket, unifying
            // M[A] with Int => Int this unifies as,
            //
            //   M[t] = [t][Int => t]  --> abstract on the right to match the expected arity
            //   A = Int               --> capture the remainder on the left
            //
            // A more "natural" unifier might be M[t] = [t][t => t]. There's lots of scope for
            // experimenting with alternatives here.
            val numCaptured = tpTypeArgs.length - typeArgs.length
            val (captured, abstractedArgs) = tpTypeArgs.splitAt(numCaptured)

            val (lhs, rhs) =
              if (isLowerBound) (abstractedArgs, typeArgs)
              else (typeArgs, abstractedArgs)

            isSubArgs(lhs, rhs, params, AnyDepth) && {
              val tpSym = tp.typeSymbolDirect
              val abstractedTypeParams = tpSym.typeParams.drop(numCaptured).map(_.cloneSymbol(tpSym))

              addBound(PolyType(abstractedTypeParams, appliedType(tp.typeConstructor, captured ++ abstractedTypeParams.map(_.tpeHK))))
              true
            }
          } else false
        }
        // The type with which we can successfully unify can be hidden
        // behind singleton types and type aliases.
        tpe.dealiasWidenChain exists unifySpecific
      }

      // There's a <: test taking place right now, where tp is a concrete type and this is a typevar
      // attempting to satisfy that test. Either the test will be unsatisfiable, in which case
      // registerBound will return false; or the upper or lower bounds of this type var will be
      // supplemented with the type being tested against.
      //
      // Eventually the types which have accumulated in the upper and lower bounds will be lubbed
      // (resp. glbbed) to instantiate the typevar.
      //
      // The only types which are eligible for unification are those with the same number of
      // typeArgs as this typevar, or Any/Nothing, which are kind-polymorphic. For the upper bound,
      // any parent or base type of `tp` may be tested here (leading to a corresponding relaxation
      // in the upper bound.) The universe of possible glbs, being somewhat more infinite, is not
      // addressed here: all lower bounds are retained and their intersection calculated when the
      // bounds are solved.
      //
      // In a side-effect free universe, checking tp and tp.parents before checking tp.baseTypeSeq
      // would be pointless. In this case, each check we perform causes us to lose specificity: in
      // the end the best we'll do is the least specific type we tested against, since the typevar
      // does not see these checks as "probes" but as requirements to fulfill.
      // TODO: can the `suspended` flag be used to poke around without leaving a trace?
      //
      // So the strategy used here is to test first the type, then the direct parents, and finally
      // to fall back on the individual base types. This warrants eventual re-examination.

      // AM: I think we could use the `suspended` flag to avoid side-effecting during unification
      if (suspended)         // constraint accumulation is disabled
        checkSubtype(tp, origin)
      else if (instValid)  // type var is already set
        checkSubtype(tp, inst)
      else isRelatable(tp) && {
        unifySimple || unifyFull(tp) || (
          // only look harder if our gaze is oriented toward Any
          isLowerBound && (
            (tp.parents exists unifyFull) || (
              // @PP: Is it going to be faster to filter out the parents we just checked?
              // That's what's done here but I'm not sure it matters.
              tp.baseTypeSeq.toList.tail filterNot (tp.parents contains _) exists unifyFull
            )
          )
        )
      }
    }

    def registerTypeEquality(tp: Type, typeVarLHS: Boolean): Boolean = {
//      println("regTypeEq: "+(safeToString, debugString(tp), tp.getClass, if (typeVarLHS) "in LHS" else "in RHS", if (suspended) "ZZ" else if (instValid) "IV" else "")) //@MDEBUG
      def checkIsSameType(tp: Type) = (
        if (typeVarLHS) inst =:= tp
        else            tp   =:= inst
      )

      if (suspended) tp =:= origin
      else if (instValid) checkIsSameType(tp)
      else isRelatable(tp) && {
        val newInst = wildcardToTypeVarMap(tp)
        (constr isWithinBounds newInst) && {
          setInst(newInst)
          true
        }
      }
    }

    /**
     * `?A.T =:= tp` is rewritten as the constraint `?A <: {type T = tp}`
     *
     * TODO: make these constraints count (incorporate them into implicit search in `applyImplicitArgs`)
     * (`T` corresponds to @param sym)
     */
    def registerTypeSelection(sym: Symbol, tp: Type): Boolean = {
      registerBound(HasTypeMember(sym.name.toTypeName, tp), isLowerBound = false)
    }

    private def isSkolemAboveLevel(tp: Type) = tp.typeSymbol match {
      case ts: TypeSkolem => ts.level > level
      case _              => false
    }


    /** Can this variable be related in a constraint to type `tp`?
      *  This is not the case if `tp` contains type skolems whose
      *  skolemization level is higher than the level of this variable.
      */
    def isRelatable(tp: Type) = !(tp exists isSkolemAboveLevel)

    override def normalize: Type = (
      if (instValid) inst
      // get here when checking higher-order subtyping of the typevar by itself
      // TODO: check whether this ever happens?
      else if (isHigherKinded) etaExpand
      else super.normalize
    )
    override def etaExpand: Type = (
      if (!isHigherKinded) this
      else logResult("Normalizing HK $this")(typeFun(params, applyArgs(params map (_.typeConstructor))))
    )
    override def typeSymbol = origin.typeSymbol

    private def tparamsOfSym(sym: Symbol) = sym.info match {
      case PolyType(tparams, _) if tparams.nonEmpty =>
        tparams map (_.defString) mkString("[", ",", "]")
      case _ => ""
    }
    def originName = origin.typeSymbolDirect.decodedName
    def originLocation = {
      val sym  = origin.typeSymbolDirect
      val encl = sym.owner.logicallyEnclosingMember

      // This should display somewhere between one and three
      // things which enclose the origin: at most, a class, a
      // a method, and a term.  At least, a class.
      List(
        Some(encl.enclClass),
        if (encl.isMethod) Some(encl) else None,
        if (sym.owner.isTerm && (sym.owner != encl)) Some(sym.owner) else None
      ).flatten map (s => s.decodedName + tparamsOfSym(s)) mkString "#"
    }
    private def levelString = if (settings.explaintypes) level else ""
    override def safeToString = (
      if ((constr eq null) || (inst eq null)) "TVar<" + originName + "=null>"
      else if (inst ne NoType) "=?" + inst
      else (if(untouchable) "!?" else "?") + levelString + originName
    )
    def originString = s"$originName in $originLocation"
    override def kind = "TypeVar"

    def cloneInternal = {
      // cloning a suspended type variable when it's suspended will cause the clone
      // to never be resumed with the current implementation
      assert(!suspended, this)
      TypeVar.trace("clone", originLocation)(
        TypeVar(origin, constr.cloneInternal, typeArgs, params)
      )
    }
  }

  /** A type carrying some annotations. Created by the typechecker
   *  when eliminating ''Annotated'' trees (see typedAnnotated).
   *
   *  @param annotations the list of annotations on the type
   *  @param underlying the type without the annotation
   */
  case class AnnotatedType(override val annotations: List[AnnotationInfo],
                           override val underlying: Type)
  extends RewrappingTypeProxy with AnnotatedTypeApi {

    assert(!annotations.isEmpty, "" + underlying)

    override protected def rewrap(tp: Type) = copy(underlying = tp)

    override def isTrivial: Boolean = underlying.isTrivial && annotations.forall(_.isTrivial)

    override def safeToString = annotations.mkString(underlying + " @", " @", "")

    override def filterAnnotations(p: AnnotationInfo => Boolean): Type = {
      val (yes, no) = annotations partition p
      if (yes.isEmpty) underlying
      else if (no.isEmpty) this
      else copy(annotations = yes)
    }
    override def setAnnotations(annots: List[AnnotationInfo]): Type =
      if (annots.isEmpty) underlying
      else copy(annotations = annots)

    /** Add a number of annotations to this type */
    override def withAnnotations(annots: List[AnnotationInfo]): Type =
      if (annots.isEmpty) this
      else copy(annots ::: this.annotations)

    /** Remove any annotations from this type.
     *  TODO - is it allowed to nest AnnotatedTypes? If not then let's enforce
     *  that at creation.  At the moment if they do ever turn up nested this
     *  recursively calls withoutAnnotations.
     */
    override def withoutAnnotations = underlying.withoutAnnotations

    /** Drop the annotations on the bounds, unless the low and high
     *  bounds are exactly tp.
     */
    override def bounds: TypeBounds = underlying.bounds match {
      case TypeBounds(_: this.type, _: this.type) => TypeBounds(this, this)
      case oftp                                   => oftp
    }

    // ** Replace formal type parameter symbols with actual type arguments. * /
    override def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]) = {
      val annotations1 = annotations.map(info => AnnotationInfo(info.atp.instantiateTypeParams(
          formals, actuals), info.args, info.assocs).setPos(info.pos))
      val underlying1 = underlying.instantiateTypeParams(formals, actuals)
      if ((annotations1 eq annotations) && (underlying1 eq underlying)) this
      else AnnotatedType(annotations1, underlying1)
    }

    /** Return the base type sequence of tp, dropping the annotations, unless the base type sequence of tp
      * is precisely tp itself. */
    override def baseTypeSeq: BaseTypeSeq = {
       val oftp = underlying.baseTypeSeq
       if ((oftp.length == 1) && (oftp(0) eq underlying))
         baseTypeSingletonSeq(this)
       else
         oftp
     }

    override def kind = "AnnotatedType"
  }

  /** Creator for AnnotatedTypes.  It returns the underlying type if annotations.isEmpty
   *  rather than walking into the assertion.
   */
  def annotatedType(annots: List[AnnotationInfo], underlying: Type): Type =
    if (annots.isEmpty) underlying
    else AnnotatedType(annots, underlying)

  object AnnotatedType extends AnnotatedTypeExtractor

  object StaticallyAnnotatedType {
    def unapply(tp: Type): Option[(List[AnnotationInfo], Type)] = tp.staticAnnotations match {
      case Nil    => None
      case annots => Some((annots, tp.withoutAnnotations))
    }
  }

  /** A class representing types with a name. When an application uses
   *  named arguments, the named argument types for calling isApplicable
   *  are represented as NamedType.
   */
  case class NamedType(name: Name, tp: Type) extends Type {
    override def safeToString: String = name.toString +": "+ tp
  }
  /** As with NamedType, used only when calling isApplicable.
   *  Records that the application has a wildcard star (aka _*)
   *  at the end of it.
   */
  case class RepeatedType(tp: Type) extends Type {
    override def safeToString: String = tp + ": _*"
  }

  /** A temporary type representing the erasure of a user-defined value type.
   *  Created during phase erasure, eliminated again in posterasure.
   *
   *  SI-6385 Erasure's creation of bridges considers method signatures `exitingErasure`,
   *          which contain `ErasedValueType`-s. In order to correctly consider the overriding
   *          and overridden signatures as equivalent in `run/t6385.scala`, it is critical that
   *          this type contains the erasure of the wrapped type, rather than the unerased type
   *          of the value class itself, as was originally done.
   *
   *  @param   valueClazz        The value class symbol
   *  @param   erasedUnderlying  The erased type of the unboxed value
   */
  abstract case class ErasedValueType(valueClazz: Symbol, erasedUnderlying: Type) extends UniqueType {
    override def safeToString = s"ErasedValueType($valueClazz, $erasedUnderlying)"
  }

  final class UniqueErasedValueType(valueClazz: Symbol, erasedUnderlying: Type) extends ErasedValueType(valueClazz, erasedUnderlying)

  object ErasedValueType {
    def apply(valueClazz: Symbol, erasedUnderlying: Type): Type = {
      assert(valueClazz ne NoSymbol, "ErasedValueType over NoSymbol")
      unique(new UniqueErasedValueType(valueClazz, erasedUnderlying))
    }
  }

  /** A class representing an as-yet unevaluated type.
   */
  abstract class LazyType extends Type {
    override def isComplete: Boolean = false
    override def complete(sym: Symbol)
    override def safeToString = "<?>"
    override def kind = "LazyType"
  }

  /** A marker trait representing an as-yet unevaluated type
   *  which doesn't assign flags to the underlying symbol.
   */
  trait FlagAgnosticCompleter extends LazyType

  /** A marker trait representing an as-yet unevaluated type
   *  which assigns flags to the underlying symbol.
   */
  trait FlagAssigningCompleter extends LazyType

  abstract class LazyPolyType(override val typeParams: List[Symbol]) extends LazyType {
    override def safeToString =
      (if (typeParams.isEmpty) "" else typeParamsString(this)) + super.safeToString
  }

// Creators ---------------------------------------------------------------

  /** Rebind symbol `sym` to an overriding member in type `pre`. */
  private def rebind(pre: Type, sym: Symbol): Symbol = {
    if (!sym.isOverridableMember || sym.owner == pre.typeSymbol) sym
    else pre.nonPrivateMember(sym.name).suchThat { sym =>
      // SI-7928 `isModuleNotMethod` is here to avoid crashing with spuriously "overloaded" module accessor and module symbols.
      //         These appear after the fields phase eliminates ModuleDefs that implement an interface.
      //         Here, we exclude the module symbol, which allows us to bind to the accessor.
      // SI-8054 We must only do this after fields, otherwise we exclude the module symbol which does not yet have an accessor!
      val isModuleWithAccessor = phase.assignsFields && sym.isModuleNotMethod
      sym.isType || (!isModuleWithAccessor && sym.isStable && !sym.hasVolatileType)
    } orElse sym
  }

  /** Convert a `super` prefix to a this-type if `sym` is abstract or final. */
  private def removeSuper(tp: Type, sym: Symbol): Type = tp match {
    case SuperType(thistp, _) =>
      if (sym.isEffectivelyFinal || sym.isDeferred) thistp
      else tp
    case _ =>
      tp
  }

  /** The canonical creator for single-types */
  def singleType(pre: Type, sym: Symbol): Type = {
    if (phase.erasedTypes)
      sym.tpe.resultType
    else if (sym.isRootPackage)
      ThisType(sym.moduleClass)
    else {
      var sym1 = rebind(pre, sym)
      val pre1 = removeSuper(pre, sym1)
      if (pre1 ne pre) sym1 = rebind(pre1, sym1)
      SingleType(pre1, sym1)
    }
  }

  /** the canonical creator for a refined type with a given scope */
  def refinedType(parents: List[Type], owner: Symbol, decls: Scope, pos: Position): Type = {
    if (phase.erasedTypes)
      if (parents.isEmpty) ObjectTpe else parents.head
    else {
      val clazz = owner.newRefinementClass(pos)
      val result = RefinedType(parents, decls, clazz)
      clazz.setInfo(result)
      result
    }
  }

  /** The canonical creator for a refined type with an initially empty scope.
   */
  def refinedType(parents: List[Type], owner: Symbol): Type =
    refinedType(parents, owner, newScope, owner.pos)

  def copyRefinedType(original: RefinedType, parents: List[Type], decls: Scope) =
    if ((parents eq original.parents) && (decls eq original.decls)) original
    else {
      val owner = original.typeSymbol.owner
      val result =
        if (isIntersectionTypeForLazyBaseType(original)) intersectionTypeForLazyBaseType(parents)
        else refinedType(parents, owner)
      val syms1 = decls.toList
      for (sym <- syms1)
        result.decls.enter(sym.cloneSymbol(result.typeSymbol))
      val syms2 = result.decls.toList
      val resultThis = result.typeSymbol.thisType
      for (sym <- syms2)
        sym modifyInfo (_ substThisAndSym(original.typeSymbol, resultThis, syms1, syms2))

      result
    }

  /** The canonical creator for typerefs
   *  todo: see how we can clean this up a bit
   */
  def typeRef(pre: Type, sym: Symbol, args: List[Type]): Type = {
    // type alias selections are rebound in TypeMap ("coevolved",
    // actually -- see #3731) e.g., when type parameters that are
    // referenced by the alias are instantiated in the prefix. See
    // pos/depmet_rebind_typealias.

    val sym1 = if (sym.isAbstractType) rebind(pre, sym) else sym
    // don't expand cyclical type alias
    // we require that object is initialized, thus info.typeParams instead of typeParams.
    if (sym1.isAliasType && sameLength(sym1.info.typeParams, args) && !sym1.lockOK)
      throw new RecoverableCyclicReference(sym1)

    val pre1 = pre match {
      case x: SuperType if sym1.isEffectivelyFinal || sym1.isDeferred =>
        x.thistpe
      case _ => pre
    }
    if (pre eq pre1)                                TypeRef(pre, sym1, args)
    else if (sym1.isAbstractType && !sym1.isClass)  typeRef(pre1, rebind(pre1, sym1), args)
    else                                            typeRef(pre1, sym1, args)
  }

  // Optimization to avoid creating unnecessary new typerefs.
  def copyTypeRef(tp: Type, pre: Type, sym: Symbol, args: List[Type]): Type = tp match {
    case TypeRef(pre0, sym0, _) if pre == pre0 && sym0.name == sym.name =>
      if (sym.isAliasType && sameLength(sym.info.typeParams, args) && !sym.lockOK)
        throw new RecoverableCyclicReference(sym)

      TypeRef(pre, sym, args)
    case _ =>
      typeRef(pre, sym, args)
  }

  /** The canonical creator for implicit method types */
  def JavaMethodType(params: List[Symbol], resultType: Type): JavaMethodType =
    new JavaMethodType(params, resultType) // don't unique this!

  /** Create a new MethodType of the same class as tp, i.e. keep JavaMethodType */
  def copyMethodType(tp: Type, params: List[Symbol], restpe: Type): Type = tp match {
    case _: JavaMethodType => JavaMethodType(params, restpe)
    case _                 => MethodType(params, restpe)
  }

  /** A creator for intersection type where intersections of a single type are
   *  replaced by the type itself, and repeated parent classes are merged.
   *
   *  !!! Repeated parent classes are not merged - is this a bug in the
   *  comment or in the code?
   */
  def intersectionType(tps: List[Type], owner: Symbol): Type = tps match {
    case tp :: Nil => tp
    case _         => refinedType(tps, owner)
  }
  /** A creator for intersection type where intersections of a single type are
   *  replaced by the type itself.
   */
  def intersectionType(tps: List[Type]): Type = tps match {
    case tp :: Nil  => tp
    case _          => refinedType(tps, commonOwner(tps))
  }
  def intersectionTypeForLazyBaseType(tps: List[Type]) = tps match {
    case tp :: Nil  => tp
    case _          => RefinedType(tps, newScope, tps.head.typeSymbolDirect)
  }
  def isIntersectionTypeForLazyBaseType(tp: RefinedType) = tp.parents match {
    case head :: _ => tp.typeSymbolDirect eq head.typeSymbolDirect
    case _ => false
  }

/**** This implementation to merge parents was checked in in commented-out
      form and has languished unaltered for five years.  I think we should
      use it or lose it.

      def merge(tps: List[Type]): List[Type] = tps match {
        case tp :: tps1 =>
          val tps1a = tps1 filter (_.typeSymbol.==(tp.typeSymbol))
          val tps1b = tps1 filter (_.typeSymbol.!=(tp.typeSymbol))
          mergePrefixAndArgs(tps1a, -1) match {
            case Some(tp1) => tp1 :: merge(tps1b)
            case None => throw new MalformedType(
              "malformed type: "+refinedType(tps, owner)+" has repeated parent class "+
              tp.typeSymbol+" with incompatible prefixes or type arguments")
          }
        case _ => tps
      }
      refinedType(merge(tps), owner)
*/

  /** A creator for type applications */
  def appliedType(tycon: Type, args: List[Type]): Type = {
    if (args.isEmpty)
      return tycon //@M! `if (args.isEmpty) tycon' is crucial (otherwise we create new types in phases after typer and then they don't get adapted (??))

    /* Disabled - causes cycles in tcpoly tests. */
    if (false && isDefinitionsInitialized) {
      assert(isUseableAsTypeArgs(args), {
        val tapp_s = s"""$tycon[${args mkString ", "}]"""
        val arg_s  = args filterNot isUseableAsTypeArg map (t => t + "/" + t.getClass) mkString ", "
        s"$tapp_s includes illegal type argument $arg_s"
      })
    }

    tycon match {
      case TypeRef(pre, sym @ (NothingClass|AnyClass), _) => copyTypeRef(tycon, pre, sym, Nil)   //@M drop type args to Any/Nothing
      case TypeRef(pre, sym, Nil)                         => copyTypeRef(tycon, pre, sym, args)
      case TypeRef(pre, sym, bogons)                      => devWarning(s"Dropping $bogons from $tycon in appliedType.") ; copyTypeRef(tycon, pre, sym, args)
      case PolyType(tparams, restpe)                      => restpe.instantiateTypeParams(tparams, args)
      case ExistentialType(tparams, restpe)               => newExistentialType(tparams, appliedType(restpe, args))
      case st: SingletonType                              => appliedType(st.widen, args) // @M TODO: what to do? see bug1
      case RefinedType(parents, decls)                    => RefinedType(parents map (appliedType(_, args)), decls)   // @PP: Can this be right?
      case TypeBounds(lo, hi)                             => TypeBounds(appliedType(lo, args), appliedType(hi, args)) // @PP: Can this be right?
      case tv@TypeVar(_, _)                               => tv.applyArgs(args)
      case AnnotatedType(annots, underlying)              => AnnotatedType(annots, appliedType(underlying, args))
      case ErrorType | WildcardType                       => tycon
      case _                                              => abort(debugString(tycon))
    }
  }

  def appliedType(tycon: Type, args: Type*): Type =
    appliedType(tycon, args.toList)

  def appliedType(tyconSym: Symbol, args: List[Type]): Type =
    appliedType(tyconSym.typeConstructor, args)

  /** Very convenient. */
  def appliedType(tyconSym: Symbol, args: Type*): Type =
    appliedType(tyconSym.typeConstructor, args.toList)

  /** A creator and extractor for type parameterizations that strips empty type parameter lists.
   *  Use this factory method to indicate the type has kind * (it's a polymorphic value)
   *  until we start tracking explicit kinds equivalent to typeFun (except that the latter requires tparams nonEmpty).
   *
   *  PP to AM: I've co-opted this for where I know tparams may well be empty, and
   *  expecting to get back `tpe` in such cases.  Re being "forgiving" below,
   *  can we instead say this is the canonical creator for polyTypes which
   *  may or may not be poly? (It filched the standard "canonical creator" name.)
   */
  object GenPolyType {
    def apply(tparams: List[Symbol], tpe: Type): Type = {
      tpe match {
        case MethodType(_, _) =>
          assert(tparams forall (_.isInvariant), "Trying to create a method with variant type parameters: " + ((tparams, tpe)))
        case _                =>
      }
      if (tparams.nonEmpty) typeFun(tparams, tpe)
      else tpe // it's okay to be forgiving here
    }
    def unapply(tpe: Type): Option[(List[Symbol], Type)] = tpe match {
      case PolyType(tparams, restpe) => Some((tparams, restpe))
      case _                         => Some((Nil, tpe))
    }
  }
  def genPolyType(params: List[Symbol], tpe: Type): Type = GenPolyType(params, tpe)

  @deprecated("use genPolyType(...) instead", "2.10.0") // Used in reflection API
  def polyType(params: List[Symbol], tpe: Type): Type = GenPolyType(params, tpe)

  /** A creator for anonymous type functions, where the symbol for the type function still needs to be created.
   *
   * TODO:
   * type params of anonymous type functions, which currently can only arise from normalising type aliases, are owned by the type alias of which they are the eta-expansion
   * higher-order subtyping expects eta-expansion of type constructors that arise from a class; here, the type params are owned by that class, but is that the right thing to do?
   */
  def typeFunAnon(tps: List[Symbol], body: Type): Type = typeFun(tps, body)

  /** A creator for a type functions, assuming the type parameters tps already have the right owner. */
  def typeFun(tps: List[Symbol], body: Type): Type = PolyType(tps, body)

  /** A creator for existential types. This generates:
   *
   *  tpe1 where { tparams }
   *
   *  where `tpe1` is the result of extrapolating `tpe` with respect to `tparams`.
   *  Extrapolating means that type variables in `tparams` occurring
   *  in covariant positions are replaced by upper bounds, (minus any
   *  SingletonClass markers), type variables in `tparams` occurring in
   *  contravariant positions are replaced by upper bounds, provided the
   *  resulting type is legal with regard to stability, and does not contain any type
   *  variable in `tparams`.
   *
   *  The abstraction drops all type parameters that are not directly or
   *  indirectly referenced by type `tpe1`. If there are no remaining type
   *  parameters, simply returns result type `tpe`.
   */
  def existentialAbstraction(tparams: List[Symbol], tpe0: Type): Type =
    if (tparams.isEmpty) tpe0
    else {
      val tpe      = normalizeAliases(tpe0)
      val tpe1     = new ExistentialExtrapolation(tparams) extrapolate tpe
      var tparams0 = tparams
      var tparams1 = tparams0 filter tpe1.contains

      while (tparams1 != tparams0) {
        tparams0 = tparams1
        tparams1 = tparams filter { p =>
          tparams1 exists { p1 => p1 == p || (p1.info contains p) }
        }
      }
      newExistentialType(tparams1, tpe1)
    }



// Hash consing --------------------------------------------------------------

  private val initialUniquesCapacity = 4096
  private var uniques: util.WeakHashSet[Type] = _
  private var uniqueRunId = NoRunId

  protected def unique[T <: Type](tp: T): T = {
    if (Statistics.canEnable) Statistics.incCounter(rawTypeCount)
    if (uniqueRunId != currentRunId) {
      uniques = util.WeakHashSet[Type](initialUniquesCapacity)
      // JZ: We used to register this as a perRunCache so it would be cleared eagerly at
      // the end of the compilation run. But, that facility didn't actually clear this map (SI-8129)!
      // When i fixed that bug, run/tpeCache-tyconCache.scala started failing. Why was that?
      // I've removed the registration for now. I don't think it's particularly harmful anymore
      // as a) this is now a weak set, and b) it is discarded completely before the next run.
      uniqueRunId = currentRunId
    }
    (uniques findEntryOrUpdate tp).asInstanceOf[T]
  }

// Helper Classes ---------------------------------------------------------

  class TypeUnwrapper(poly: Boolean, existential: Boolean, annotated: Boolean, nullary: Boolean) extends (Type => Type) {
    def apply(tp: Type): Type = tp match {
      case AnnotatedType(_, underlying) if annotated      => apply(underlying)
      case ExistentialType(_, underlying) if existential  => apply(underlying)
      case PolyType(_, underlying) if poly                => apply(underlying)
      case NullaryMethodType(underlying) if nullary       => apply(underlying)
      case tp                                             => tp
    }
  }
  class ClassUnwrapper(existential: Boolean) extends TypeUnwrapper(poly = true, existential, annotated = true, nullary = false) {
    override def apply(tp: Type) = super.apply(tp.normalize) // normalize is required here
  }

  object        unwrapToClass extends ClassUnwrapper(existential = true) { }
  object  unwrapToStableClass extends ClassUnwrapper(existential = false) { }
  object   unwrapWrapperTypes extends  TypeUnwrapper(true, true, true, true) { }

  def elementExtract(container: Symbol, tp: Type): Type = {
    assert(!container.isAliasType, container)
    unwrapWrapperTypes(tp baseType container).dealiasWiden match {
      case TypeRef(_, `container`, arg :: Nil)  => arg
      case _                                    => NoType
    }
  }
  def elementExtractOption(container: Symbol, tp: Type): Option[Type] = {
    elementExtract(container, tp) match {
      case NoType => None
      case tp => Some(tp)
    }
  }
  def elementTest(container: Symbol, tp: Type)(f: Type => Boolean): Boolean = {
    elementExtract(container, tp) match {
      case NoType => false
      case tp => f(tp)
    }
  }
  def elementTransform(container: Symbol, tp: Type)(f: Type => Type): Type = {
    elementExtract(container, tp) match {
      case NoType => NoType
      case tp => f(tp)
    }
  }

  def transparentShallowTransform(container: Symbol, tp: Type)(f: Type => Type): Type = {
    def loop(tp: Type): Type = tp match {
      case tp @ AnnotatedType(_, underlying)        => tp.copy(underlying = loop(underlying))
      case tp @ ExistentialType(_, underlying)      => tp.copy(underlying = loop(underlying))
      case tp @ PolyType(_, resultType)             => tp.copy(resultType = loop(resultType))
      case tp @ NullaryMethodType(resultType)       => tp.copy(resultType = loop(resultType))
      case tp                                       => elementTransform(container, tp)(el => appliedType(container, f(el))).orElse(f(tp))
    }
    loop(tp)
  }

  /** Repack existential types, otherwise they sometimes get unpacked in the
   *  wrong location (type inference comes up with an unexpected skolem)
   */
  def repackExistential(tp: Type): Type = (
    if (tp == NoType) tp
    else existentialAbstraction(existentialsInType(tp), tp)
  )

  def containsExistential(tpe: Type) = tpe exists typeIsExistentiallyBound
  def existentialsInType(tpe: Type) = tpe withFilter typeIsExistentiallyBound map (_.typeSymbol)

  private def isDummyOf(tpe: Type)(targ: Type) = {
    val sym = targ.typeSymbol
    sym.isTypeParameter && sym.owner == tpe.typeSymbol
  }
  def isDummyAppliedType(tp: Type) = tp.dealias match {
    case tr @ TypeRef(_, _, args) => args exists isDummyOf(tr)
    case _                        => false
  }

  def typeParamsToExistentials(clazz: Symbol, tparams: List[Symbol]): List[Symbol] = {
    val eparams = mapWithIndex(tparams)((tparam, i) =>
      clazz.newExistential(newTypeName("?"+i), clazz.pos) setInfo tparam.info.bounds)

    eparams map (_ substInfo (tparams, eparams))
  }
  def typeParamsToExistentials(clazz: Symbol): List[Symbol] =
    typeParamsToExistentials(clazz, clazz.typeParams)

  def isRawIfWithoutArgs(sym: Symbol) = sym.isClass && sym.typeParams.nonEmpty && sym.isJavaDefined
  /** Is type tp a ''raw type''? */
  //  note: it's important to write the two tests in this order,
  //  as only typeParams forces the classfile to be read. See #400
  def isRawType(tp: Type) = !phase.erasedTypes && (tp match {
    case TypeRef(_, sym, Nil) => isRawIfWithoutArgs(sym)
    case _                    => false
  })

  @deprecated("use isRawType", "2.10.1") // presently used by sbt
  def isRaw(sym: Symbol, args: List[Type]) = (
       !phase.erasedTypes
    && args.isEmpty
    && isRawIfWithoutArgs(sym)
  )

  def singletonBounds(hi: Type) = TypeBounds.upper(intersectionType(List(hi, SingletonClass.tpe)))

  /**
   * A more persistent version of `Type#memberType` which does not require
   * that the symbol is a direct member of the prefix.
   *
   * For instance:
   *
   * {{{
   * class C[T] {
   *   sealed trait F[A]
   *   object X {
   *     object S1 extends F[T]
   *   }
   *   class S2 extends F[T]
   * }
   * object O extends C[Int] {
   *   def foo(f: F[Int]) = f match {...} // need to enumerate sealed subtypes of the scrutinee here.
   * }
   * class S3 extends O.F[String]
   *
   * nestedMemberType(<S1>, <O.type>, <C>) = O.X.S1.type
   * nestedMemberType(<S2>, <O.type>, <C>) = O.S2.type
   * nestedMemberType(<S3>, <O.type>, <C>) = S3.type
   * }}}
   *
   * @param sym    The symbol of the subtype
   * @param pre    The prefix from which the symbol is seen
   * @param owner
   */
  def nestedMemberType(sym: Symbol, pre: Type, owner: Symbol): Type = {
    def loop(tp: Type): Type =
      if (tp.isTrivial) tp
      else if (tp.prefix.typeSymbol isNonBottomSubClass owner) {
        val widened = tp match {
          case _: ConstantType => tp // Java enum constants: don't widen to the enum type!
          case _               => tp.widen // C.X.type widens to C.this.X.type, otherwise `tp asSeenFrom (pre, C)` has no effect.
        }
        val memType = widened asSeenFrom (pre, tp.typeSymbol.owner)
        if (tp eq widened) memType else memType.narrow
      }
      else loop(tp.prefix) memberType tp.typeSymbol

    val result = loop(sym.tpeHK)
    assert(sym.isTerm || result.typeSymbol == sym, s"($result).typeSymbol = ${result.typeSymbol}; expected ${sym}")
    result
  }

  class MissingAliasControl extends ControlThrowable
  val missingAliasException = new MissingAliasControl
  class MissingTypeControl extends ControlThrowable

// Helper Methods  -------------------------------------------------------------

  /** The maximum allowable depth of lubs or glbs over types `ts`.
    */
  def lubDepth(ts: List[Type]): Depth = {
    val td = typeDepth(ts)
    val bd = baseTypeSeqDepth(ts)
    lubDepthAdjust(td, td max bd)
  }

  /** The maximum allowable depth of lubs or glbs over given types,
   *  as a function over the maximum depth `td` of these types, and
   *  the maximum depth `bd` of all types in the base type sequences of these types.
   */
  private def lubDepthAdjust(td: Depth, bd: Depth): Depth = (
    if (settings.XfullLubs) bd
    else if (bd <= Depth(3)) bd
    else if (bd <= Depth(5)) td max bd.decr
    else if (bd <= Depth(7)) td max (bd decr 2)
    else td.decr max (bd decr 3)
  )

  private def symTypeDepth(syms: List[Symbol]): Depth  = typeDepth(syms map (_.info))
  private def typeDepth(tps: List[Type]): Depth        = maxDepth(tps)
  private def baseTypeSeqDepth(tps: List[Type]): Depth = maxbaseTypeSeqDepth(tps)

  /** Is intersection of given types populated? That is,
   *  for all types tp1, tp2 in intersection
   *    for all common base classes bc of tp1 and tp2
   *      let bt1, bt2 be the base types of tp1, tp2 relative to class bc
   *      Then:
   *        bt1 and bt2 have the same prefix, and
   *        any corresponding non-variant type arguments of bt1 and bt2 are the same
   */
  def isPopulated(tp1: Type, tp2: Type): Boolean = {
    def isConsistent(tp1: Type, tp2: Type): Boolean = (tp1.dealias, tp2.dealias) match {
      case (TypeRef(pre1, sym1, args1), TypeRef(pre2, sym2, args2)) =>
        assert(sym1 == sym2, (sym1, sym2))
        (    pre1 =:= pre2
          && forall3(args1, args2, sym1.typeParams) { (arg1, arg2, tparam) =>
               // if left-hand argument is a typevar, make it compatible with variance
               // this is for more precise pattern matching
               // todo: work this in the spec of this method
               // also: think what happens if there are embedded typevars?
               if (tparam.variance.isInvariant)
                 arg1 =:= arg2
               else !arg1.isInstanceOf[TypeVar] || {
                 if (tparam.variance.isContravariant) arg1 <:< arg2
                 else arg2 <:< arg1
               }
             }
        )
      case (et: ExistentialType, _) =>
        et.withTypeVars(isConsistent(_, tp2))
      case (_, et: ExistentialType) =>
        et.withTypeVars(isConsistent(tp1, _))
      case (_, _) =>
        throw new MatchError((tp1, tp2))
    }

    def check(tp1: Type, tp2: Type) = (
      if (tp1.typeSymbol.isClass && tp1.typeSymbol.hasFlag(FINAL))
        tp1 <:< tp2 || isNumericValueClass(tp1.typeSymbol) && isNumericValueClass(tp2.typeSymbol)
      else tp1.baseClasses forall (bc =>
        tp2.baseTypeIndex(bc) < 0 || isConsistent(tp1.baseType(bc), tp2.baseType(bc)))
    )

    check(tp1, tp2) && check(tp2, tp1)
  }

  def normalizePlus(tp: Type): Type = {
    if (isRawType(tp)) rawToExistential(tp)
    else tp.normalize match {
      // Unify the representations of module classes
      case st@SingleType(_, sym) if sym.isModule => st.underlying.normalize
      case st@ThisType(sym) if sym.isModuleClass => normalizePlus(st.underlying)
      case _ => tp.normalize
    }
  }

  /*
  todo: change to:
  def normalizePlus(tp: Type) = tp match {
    case TypeRef(pre, sym, List()) =>
      if (!sym.isInitialized) sym.rawInfo.load(sym)
      if (sym.isJavaDefined && !sym.typeParams.isEmpty) rawToExistential(tp)
      else tp.normalize
    case _ => tp.normalize
  }
  */


  /** Are `tps1` and `tps2` lists of pairwise equivalent types? */
  def isSameTypes(tps1: List[Type], tps2: List[Type]): Boolean = (tps1 corresponds tps2)(_ =:= _)

  /** True if two lists have the same length.  Since calling length on linear sequences
   *  is O(n), it is an inadvisable way to test length equality.
   */
  final def sameLength(xs1: List[_], xs2: List[_]) = compareLengths(xs1, xs2) == 0
  @tailrec final def compareLengths(xs1: List[_], xs2: List[_]): Int =
    if (xs1.isEmpty) { if (xs2.isEmpty) 0 else -1 }
    else if (xs2.isEmpty) 1
    else compareLengths(xs1.tail, xs2.tail)

  /** Again avoiding calling length, but the lengthCompare interface is clunky.
   */
  final def hasLength(xs: List[_], len: Int) = xs.lengthCompare(len) == 0

  private var _basetypeRecursions: Int = 0
  def basetypeRecursions = _basetypeRecursions
  def basetypeRecursions_=(value: Int) = _basetypeRecursions = value

  private val _pendingBaseTypes = new mutable.HashSet[Type]
  def pendingBaseTypes = _pendingBaseTypes

  /** Does this type have a prefix that begins with a type variable,
   *  or is it a refinement type? For type prefixes that fulfil this condition,
   *  type selections with the same name of equal (as determined by `=:=`) prefixes are
   *  considered equal in regard to `=:=`.
   */
  def isEligibleForPrefixUnification(tp: Type): Boolean = tp match {
    case SingleType(pre, sym)  => !(sym hasFlag PACKAGE) && isEligibleForPrefixUnification(pre)
    case tv@TypeVar(_, constr) => !tv.instValid || isEligibleForPrefixUnification(constr.inst)
    case RefinedType(_, _)     => true
    case _                     => false
  }

  def isErrorOrWildcard(tp: Type) = (tp eq ErrorType) || (tp eq WildcardType)

  /** This appears to be equivalent to tp.isInstanceof[SingletonType],
   *  except it excludes ConstantTypes.
   */
  def isSingleType(tp: Type) = tp match {
    case ThisType(_) | SuperType(_, _) | SingleType(_, _) => true
    case _                                                => false
  }

  def isConstantType(tp: Type) = tp match {
    case ConstantType(_) => true
    case _               => false
  }

  def isExistentialType(tp: Type): Boolean = tp match {
    case _: ExistentialType           => true
    case tp: Type if tp.dealias ne tp => isExistentialType(tp.dealias)
    case _                            => false
  }

  def isImplicitMethodType(tp: Type) = tp match {
    case mt: MethodType => mt.isImplicit
    case _              => false
  }

  /** This is defined and named as it is because the goal is to exclude source
   *  level types which are not value types (e.g. MethodType) without excluding
   *  necessary internal types such as WildcardType.  There are also non-value
   *  types which can be used as type arguments (e.g. type constructors.)
   */
  def isUseableAsTypeArg(tp: Type) = (
       isInternalTypeUsedAsTypeArg(tp)  // the subset of internal types which can be type args
    || isHKTypeRef(tp)                  // not a value type, but ok as a type arg
    || isValueElseNonValue(tp)          // otherwise only value types
  )

  private def isHKTypeRef(tp: Type) = tp match {
    case TypeRef(_, sym, Nil) => tp.isHigherKinded
    case _                    => false
  }
  @tailrec final def isUseableAsTypeArgs(tps: List[Type]): Boolean = tps match {
    case Nil     => true
    case x :: xs => isUseableAsTypeArg(x) && isUseableAsTypeArgs(xs)
  }

  /** The "third way", types which are neither value types nor
   *  non-value types as defined in the SLS, further divided into
   *  types which are used internally in type applications and
   *  types which are not.
   */
  /**** Not used right now, but kept around to document which Types
   *    land in which bucket.
  private def isInternalTypeNotUsedAsTypeArg(tp: Type): Boolean = tp match {
    case AntiPolyType(pre, targs)            => true
    case ClassInfoType(parents, defs, clazz) => true
    case ErasedValueType(tref)               => true
    case NoPrefix                            => true
    case NoType                              => true
    case SuperType(thistpe, supertpe)        => true
    case TypeBounds(lo, hi)                  => true
    case _                                   => false
  }
  ****/
  private def isInternalTypeUsedAsTypeArg(tp: Type): Boolean = tp match {
    case WildcardType           => true
    case BoundedWildcardType(_) => true
    case ErrorType              => true
    case _: TypeVar             => true
    case _                      => false
  }
  private def isAlwaysValueType(tp: Type) = tp match {
    case RefinedType(_, _)       => true
    case ExistentialType(_, _)   => true
    case ConstantType(_)         => true
    case _                       => false
  }
  private def isAlwaysNonValueType(tp: Type) = tp match {
    case OverloadedType(_, _)          => true
    case NullaryMethodType(_)          => true
    case MethodType(_, _)              => true
    case PolyType(_, MethodType(_, _)) => true
    case _                             => false
  }
  /** Should be called only with types for which a clear true/false answer
   *  can be given: true == value type, false == non-value type.  Otherwise,
   *  an exception is thrown.
   */
  private def isValueElseNonValue(tp: Type): Boolean = tp match {
    case tp if isAlwaysValueType(tp)           => true
    case tp if isAlwaysNonValueType(tp)        => false
    case AnnotatedType(_, underlying)          => isValueElseNonValue(underlying)
    case SingleType(_, sym)                    => sym.isValue           // excludes packages and statics
    case TypeRef(_, _, _) if tp.isHigherKinded => false                 // excludes type constructors
    case ThisType(sym)                         => !sym.isPackageClass   // excludes packages
    case TypeRef(_, sym, _)                    => !sym.isPackageClass   // excludes packages
    case PolyType(_, _)                        => true                  // poly-methods excluded earlier
    case tp                                    => sys.error("isValueElseNonValue called with third-way type " + tp)
  }

  /** SLS 3.2, Value Types
   *  Is the given type definitely a value type? A true result means
   *  it verifiably is, but a false result does not mean it is not,
   *  only that it cannot be assured.  To avoid false positives, this
   *  defaults to false, but since Type is not sealed, one should take
   *  a false answer with a grain of salt.  This method may be primarily
   *  useful as documentation; it is likely that !isNonValueType(tp)
   *  will serve better than isValueType(tp).
   */
  /** def isValueType(tp: Type) = isValueElseNonValue(tp) */

  /** SLS 3.3, Non-Value Types
   *  Is the given type definitely a non-value type, as defined in SLS 3.3?
   *  The specification-enumerated non-value types are method types, polymorphic
   *  method types, and type constructors.  Supplements to the specified set of
   *  non-value types include: types which wrap non-value symbols (packages
   *  and statics), overloaded types. Varargs and by-name types T* and (=>T) are
   *  not designated non-value types because there is code which depends on using
   *  them as type arguments, but their precise status is unclear.
   */
  /** def isNonValueType(tp: Type) = !isValueElseNonValue(tp) */

  def isNonRefinementClassType(tpe: Type) = tpe match {
    case SingleType(_, sym) => sym.isModuleClass
    case TypeRef(_, sym, _) => sym.isClass && !sym.isRefinementClass
    case ErrorType          => true
    case _                  => false
  }

  def isSubArgs(tps1: List[Type], tps2: List[Type], tparams: List[Symbol], depth: Depth): Boolean = {
    def isSubArg(t1: Type, t2: Type, variance: Variance) = (
         (variance.isCovariant || isSubType(t2, t1, depth))     // The order of these two checks can be material for performance (SI-8478)
      && (variance.isContravariant || isSubType(t1, t2, depth))
    )

    corresponds3(tps1, tps2, mapList(tparams)(_.variance))(isSubArg)
  }

  def specializesSym(tp: Type, sym: Symbol, depth: Depth): Boolean = {
    def directlySpecializedBy(member: Symbol): Boolean = (
         member == sym
      || specializesSym(tp.narrow, member, sym.owner.thisType, sym, depth)
    )
    // Closure reduction, else this would be simply `member exists directlySpecializedBy`
    def specializedBy(member: Symbol): Boolean = (
      if (member eq NoSymbol) false
      else if (member.isOverloaded) member.alternatives exists directlySpecializedBy
      else directlySpecializedBy(member)
    )

    (    (tp.typeSymbol isBottomSubClass sym.owner)
      || specializedBy(tp nonPrivateMember sym.name)
    )
  }

  /** Does member `symLo` of `tpLo` have a stronger type
   *  than member `symHi` of `tpHi`?
   */
  protected[internal] def specializesSym(preLo: Type, symLo: Symbol, preHi: Type, symHi: Symbol, depth: Depth): Boolean =
    (symHi.isAliasType || symHi.isTerm || symHi.isAbstractType) && {
      // only now that we know symHi is a viable candidate ^^^^^^^, do the expensive checks: ----V
      require((symLo ne NoSymbol) && (symHi ne NoSymbol), ((preLo, symLo, preHi, symHi, depth)))

      val tpHi = preHi.memberInfo(symHi).substThis(preHi.typeSymbol, preLo)

      // Should we use memberType or memberInfo?
      // memberType transforms (using `asSeenFrom`) `sym.tpe`,
      // whereas memberInfo performs the same transform on `sym.info`.
      // For term symbols, this ends up being the same thing (`sym.tpe == sym.info`).
      // For type symbols, however, the `.info` of an abstract type member
      // is defined by its bounds, whereas its `.tpe` is a `TypeRef` to that type symbol,
      // so that `sym.tpe <:< sym.info`, but not the other way around.
      //
      // Thus, for the strongest (correct) result,
      // we should use `memberType` on the low side.
      //
      // On the high side, we should use the result appropriate
      // for the right side of the `<:<` above (`memberInfo`).
      val tpLo = preLo.memberType(symLo)

      debuglog(s"specializesSymHi: $preHi . $symHi : $tpHi")
      debuglog(s"specializesSymLo: $preLo . $symLo : $tpLo")

      if (symHi.isTerm)
        (isSubType(tpLo, tpHi, depth)        &&
         (!symHi.isStable || symLo.isStable) &&                                // sub-member must remain stable
         (!symLo.hasVolatileType || symHi.hasVolatileType || tpHi.isWildcard)) // sub-member must not introduce volatility
      else if (symHi.isAbstractType)
        ((tpHi.bounds containsType tpLo) &&
         kindsConform(symHi :: Nil, tpLo :: Nil, preLo, symLo.owner))
      else // we know `symHi.isAliasType` (see above)
        tpLo =:= tpHi
    }

  /** A function implementing `tp1` matches `tp2`. */
  final def matchesType(tp1: Type, tp2: Type, alwaysMatchSimple: Boolean): Boolean = {
    def matchesQuantified(tparams1: List[Symbol], tparams2: List[Symbol], res1: Type, res2: Type): Boolean = (
      sameLength(tparams1, tparams2) &&
      matchesType(res1, res2.substSym(tparams2, tparams1), alwaysMatchSimple)
    )
    def lastTry =
      tp2 match {
        case ExistentialType(_, res2) if alwaysMatchSimple =>
          matchesType(tp1, res2, alwaysMatchSimple = true)
        case MethodType(_, _) =>
          false
        case PolyType(_, _) =>
          false
        case _ =>
          alwaysMatchSimple || tp1 =:= tp2
      }
    tp1 match {
      case mt1 @ MethodType(params1, res1) =>
        tp2 match {
          case mt2 @ MethodType(params2, res2) =>
            // sameLength(params1, params2) was used directly as pre-screening optimization (now done by matchesQuantified -- is that ok, performance-wise?)
            mt1.isImplicit == mt2.isImplicit &&
            matchingParams(params1, params2, mt1.isJava, mt2.isJava) &&
            matchesQuantified(params1, params2, res1, res2)
          case NullaryMethodType(res2) =>
            if (params1.isEmpty) matchesType(res1, res2, alwaysMatchSimple)
            else matchesType(tp1, res2, alwaysMatchSimple)
          case ExistentialType(_, res2) =>
            alwaysMatchSimple && matchesType(tp1, res2, alwaysMatchSimple = true)
          case TypeRef(_, sym, Nil) =>
            params1.isEmpty && sym.isModuleClass && matchesType(res1, tp2, alwaysMatchSimple)
          case _ =>
            false
        }
      case mt1 @ NullaryMethodType(res1) =>
        tp2 match {
          case mt2 @ MethodType(Nil, res2)  => // could never match if params nonEmpty, and !mt2.isImplicit is implied by empty param list
            matchesType(res1, res2, alwaysMatchSimple)
          case NullaryMethodType(res2) =>
            matchesType(res1, res2, alwaysMatchSimple)
          case ExistentialType(_, res2) =>
            alwaysMatchSimple && matchesType(tp1, res2, alwaysMatchSimple = true)
          case TypeRef(_, sym, Nil) if sym.isModuleClass =>
            matchesType(res1, tp2, alwaysMatchSimple)
          case _ =>
            matchesType(res1, tp2, alwaysMatchSimple)
        }
      case PolyType(tparams1, res1) =>
        tp2 match {
          case PolyType(tparams2, res2) =>
            if ((tparams1 corresponds tparams2)(_ eq _))
              matchesType(res1, res2, alwaysMatchSimple)
            else
              matchesQuantified(tparams1, tparams2, res1, res2)
          case ExistentialType(_, res2) =>
            alwaysMatchSimple && matchesType(tp1, res2, alwaysMatchSimple = true)
          case _ =>
            false // remember that tparams1.nonEmpty is now an invariant of PolyType
        }
      case ExistentialType(tparams1, res1) =>
        tp2 match {
          case ExistentialType(tparams2, res2) =>
            matchesQuantified(tparams1, tparams2, res1, res2)
          case _ =>
            if (alwaysMatchSimple) matchesType(res1, tp2, alwaysMatchSimple = true)
            else lastTry
        }
      case TypeRef(_, sym, Nil) if sym.isModuleClass =>
        tp2 match {
          case MethodType(Nil, res2)   => matchesType(tp1, res2, alwaysMatchSimple)
          case NullaryMethodType(res2) => matchesType(tp1, res2, alwaysMatchSimple)
          case _                       => lastTry
        }
      case _ =>
        lastTry
    }
  }

/** matchesType above is an optimized version of the following implementation:

  def matchesType2(tp1: Type, tp2: Type, alwaysMatchSimple: Boolean): Boolean = {
    def matchesQuantified(tparams1: List[Symbol], tparams2: List[Symbol], res1: Type, res2: Type): Boolean =
      tparams1.length == tparams2.length &&
      matchesType(res1, res2.substSym(tparams2, tparams1), alwaysMatchSimple)
    (tp1, tp2) match {
      case (MethodType(params1, res1), MethodType(params2, res2)) =>
        params1.length == params2.length && // useful pre-screening optimization
        matchingParams(params1, params2, tp1.isInstanceOf[JavaMethodType], tp2.isInstanceOf[JavaMethodType]) &&
        matchesType(res1, res2, alwaysMatchSimple) &&
        tp1.isImplicit == tp2.isImplicit
      case (PolyType(tparams1, res1), PolyType(tparams2, res2)) =>
        matchesQuantified(tparams1, tparams2, res1, res2)
      case (NullaryMethodType(rtp1), MethodType(List(), rtp2)) =>
        matchesType(rtp1, rtp2, alwaysMatchSimple)
      case (MethodType(List(), rtp1), NullaryMethodType(rtp2)) =>
        matchesType(rtp1, rtp2, alwaysMatchSimple)
      case (ExistentialType(tparams1, res1), ExistentialType(tparams2, res2)) =>
        matchesQuantified(tparams1, tparams2, res1, res2)
      case (ExistentialType(_, res1), _) if alwaysMatchSimple =>
        matchesType(res1, tp2, alwaysMatchSimple)
      case (_, ExistentialType(_, res2)) if alwaysMatchSimple =>
        matchesType(tp1, res2, alwaysMatchSimple)
      case (NullaryMethodType(rtp1), _) =>
        matchesType(rtp1, tp2, alwaysMatchSimple)
      case (_, NullaryMethodType(rtp2)) =>
        matchesType(tp1, rtp2, alwaysMatchSimple)
      case (MethodType(_, _), _) => false
      case (PolyType(_, _), _)   => false
      case (_, MethodType(_, _)) => false
      case (_, PolyType(_, _))   => false
      case _ =>
        alwaysMatchSimple || tp1 =:= tp2
    }
  }
*/

  /** Are `syms1` and `syms2` parameter lists with pairwise equivalent types? */
  protected[internal] def matchingParams(syms1: List[Symbol], syms2: List[Symbol], syms1isJava: Boolean, syms2isJava: Boolean): Boolean = syms1 match {
    case Nil =>
      syms2.isEmpty
    case sym1 :: rest1 =>
      syms2 match {
        case Nil =>
          false
        case sym2 :: rest2 =>
          val tp1 = sym1.tpe
          val tp2 = sym2.tpe
          (tp1 =:= tp2 ||
           syms1isJava && tp2.typeSymbol == ObjectClass && tp1.typeSymbol == AnyClass ||
           syms2isJava && tp1.typeSymbol == ObjectClass && tp2.typeSymbol == AnyClass) &&
          matchingParams(rest1, rest2, syms1isJava, syms2isJava)
      }
  }

  /** Do type arguments `targs` conform to formal parameters `tparams`?
   */
  def isWithinBounds(pre: Type, owner: Symbol, tparams: List[Symbol], targs: List[Type]): Boolean = {
    var bounds = instantiatedBounds(pre, owner, tparams, targs)
    if (targs exists typeHasAnnotations)
      bounds = adaptBoundsToAnnotations(bounds, tparams, targs)
    (bounds corresponds targs)(boundsContainType)
  }

  def instantiatedBounds(pre: Type, owner: Symbol, tparams: List[Symbol], targs: List[Type]): List[TypeBounds] =
    mapList(tparams)(_.info.asSeenFrom(pre, owner).instantiateTypeParams(tparams, targs).bounds)

  def elimAnonymousClass(t: Type) = t match {
    case TypeRef(pre, clazz, Nil) if clazz.isAnonymousClass =>
      clazz.classBound.asSeenFrom(pre, clazz.owner)
    case _ =>
      t
  }

  /** A list of the typevars in a type. */
  def typeVarsInType(tp: Type): List[TypeVar] = {
    var tvs: List[TypeVar] = Nil
    tp foreach {
      case t: TypeVar => tvs ::= t
      case _          =>
    }
    tvs.reverse
  }

  // If this type contains type variables, put them to sleep for a while.
  // Don't just wipe them out by replacing them by the corresponding type
  // parameter, as that messes up (e.g.) type variables in type refinements.
  // Without this, the matchesType call would lead to type variables on both
  // sides of a subtyping/equality judgement, which can lead to recursive types
  // being constructed. See pos/t0851 for a situation where this happens.
  @inline final def suspendingTypeVars[T](tvs: List[TypeVar])(op: => T): T = {
    val saved = tvs map (_.suspended)
    tvs foreach (_.suspended = true)

    try op
    finally foreach2(tvs, saved)(_.suspended = _)
  }

  final def stripExistentialsAndTypeVars(ts: List[Type], expandLazyBaseType: Boolean = false): (List[Type], List[Symbol]) = {
    val needsStripping = ts.exists {
      case _: RefinedType | _: TypeVar | _: ExistentialType => true
      case _ => false
    }
    if (!needsStripping) (ts, Nil) // fast path for common case
    else {
      val tparams = mutable.ListBuffer[Symbol]()
      val stripped = mutable.ListBuffer[Type]()
      def stripType(tp: Type): Unit = tp match {
        case rt: RefinedType if isIntersectionTypeForLazyBaseType(rt) =>
          if (expandLazyBaseType)
            rt.parents foreach stripType
          else {
            devWarning(s"Unexpected RefinedType in stripExistentialsAndTypeVars $ts, not expanding")
            stripped += tp
          }
        case ExistentialType(qs, underlying) =>
          tparams ++= qs
          stripType(underlying)
        case tv@TypeVar(_, constr) =>
          if (tv.instValid) stripType(constr.inst)
          else if (tv.untouchable) stripped += tv
          else abort("trying to do lub/glb of typevar " + tv)
        case tp => stripped += tp
      }
      ts foreach stripType
      (stripped.toList, tparams.toList)
    }
  }

  /** Compute lub (if `variance == Covariant`) or glb (if `variance == Contravariant`) of given list
   *  of types `tps`. All types in `tps` are typerefs or singletypes
   *  with the same symbol.
   *  Return `x` if the computation succeeds with result `x`.
   *  Return `NoType` if the computation fails.
   */
  def mergePrefixAndArgs(tps0: List[Type], variance: Variance, depth: Depth): Type = {
    val (tps, tparams) = stripExistentialsAndTypeVars(tps0, expandLazyBaseType = true)

    val merged = tps match {
      case tp :: Nil => tp
      case TypeRef(_, sym, _) :: rest =>
        val pres = tps map (_.prefix) // prefix normalizes automatically
      val pre = if (variance.isPositive) lub(pres, depth) else glb(pres, depth)
        val argss = tps map (_.normalize.typeArgs) // symbol equality (of the tp in tps) was checked using typeSymbol, which normalizes, so should normalize before retrieving arguments
      val capturedParams = new ListBuffer[Symbol]
        try {
          if (sym == ArrayClass && phase.erasedTypes) {
            // special treatment for lubs of array types after erasure:
            // if argss contain one value type and some other type, the lub is Object
            // if argss contain several reference types, the lub is an array over lub of argtypes
            if (argss exists typeListIsEmpty) {
              NoType  // something is wrong: an array without a type arg.
            }
            else {
              val args = argss map (_.head)
              if (args.tail forall (_ =:= args.head)) typeRef(pre, sym, List(args.head))
              else if (args exists (arg => isPrimitiveValueClass(arg.typeSymbol))) ObjectTpe
              else typeRef(pre, sym, List(lub(args)))
            }
          }
          else transposeSafe(argss) match {
            case None =>
              // transpose freaked out because of irregular argss
              // catching just in case (shouldn't happen, but also doesn't cost us)
              // [JZ] It happens: see SI-5683.
              debuglog(s"transposed irregular matrix!? tps=$tps argss=$argss")
              NoType
            case Some(argsst) =>
              var capturedParamIds = 0
              val args = map2(sym.typeParams, argsst) { (tparam, as0) =>
                val as = as0.distinct
                if (as.size == 1) as.head
                else if (depth.isZero) {
                  log("Giving up merging args: can't unify %s under %s".format(as.mkString(", "), tparam.fullLocationString))
                  // Don't return "Any" (or "Nothing") when we have to give up due to
                  // recursion depth. Return NoType, which prevents us from poisoning
                  // lublist's results. It can recognize the recursion and deal with it, but
                  // only if we aren't returning invalid types.
                  NoType
                }
                else {
                  if (tparam.variance == variance) lub(as, depth.decr)
                  else if (tparam.variance == variance.flip) glb(as, depth.decr)
                  else {
                    val l = lub(as, depth.decr)
                    val g = glb(as, depth.decr)
                    if (l <:< g) l
                    else { // Martin: I removed this, because incomplete. Not sure there is a good way to fix it. For the moment we
                      // just err on the conservative side, i.e. with a bound that is too high.
                      // if(!(tparam.info.bounds contains tparam))   //@M can't deal with f-bounds, see #2251
                      capturedParamIds += 1
                      val capturedParamId = capturedParamIds

                      val qvar = commonOwner(as).freshExistential("", capturedParamId) setInfo TypeBounds(g, l)
                      capturedParams += qvar
                      qvar.tpe
                    }
                  }
                }
              }
              if (args contains NoType) NoType
              else existentialAbstraction(capturedParams.toList, typeRef(pre, sym, args))
          }
        } catch {
          case ex: MalformedType => NoType
        }
      case SingleType(_, sym) :: rest =>
        val pres = tps map (_.prefix)
        val pre = if (variance.isPositive) lub(pres, depth) else glb(pres, depth)
        try singleType(pre, sym)
        catch { case ex: MalformedType => NoType }
      case _ =>
        abort(s"mergePrefixAndArgs($tps, $variance, $depth): unsupported tps")
    }
    existentialAbstraction(tparams, merged)
  }

  def addMember(thistp: Type, tp: Type, sym: Symbol): Unit = addMember(thistp, tp, sym, AnyDepth)

  /** Make symbol `sym` a member of scope `tp.decls`
   *  where `thistp` is the narrowed owner type of the scope.
   */
  def addMember(thistp: Type, tp: Type, sym: Symbol, depth: Depth) {
    assert(sym != NoSymbol)
    // debuglog("add member " + sym+":"+sym.info+" to "+thistp) //DEBUG
    if (!specializesSym(thistp, sym, depth)) {
      if (sym.isTerm)
        for (alt <- tp.nonPrivateDecl(sym.name).alternatives)
          if (specializesSym(thistp, sym, thistp, alt, depth))
            tp.decls unlink alt
      tp.decls enter sym
    }
  }

  def isJavaVarargsAncestor(clazz: Symbol) = (
       clazz.isClass
    && clazz.isJavaDefined
    && (clazz.info.nonPrivateDecls exists isJavaVarArgsMethod)
  )
  def inheritsJavaVarArgsMethod(clazz: Symbol) =
    clazz.thisType.baseClasses exists isJavaVarargsAncestor

// Errors and Diagnostics -----------------------------------------------------

  /** A throwable signalling a type error */
  class TypeError(var pos: Position, val msg: String) extends Throwable(msg) {
    def this(msg: String) = this(NoPosition, msg)
  }

  // TODO: RecoverableCyclicReference should be separated from TypeError,
  // but that would be a big change. Left for further refactoring.
  /** An exception for cyclic references from which we can recover */
  case class RecoverableCyclicReference(sym: Symbol)
    extends TypeError("illegal cyclic reference involving " + sym) {
    if (settings.debug) printStackTrace()
  }

  class NoCommonType(tps: List[Type]) extends Throwable(
    "lub/glb of incompatible types: " + tps.mkString("", " and ", "")) with ControlThrowable

  /** A throwable signalling a malformed type */
  class MalformedType(msg: String) extends TypeError(msg) {
    def this(pre: Type, tp: String) = this("malformed type: " + pre + "#" + tp)
  }

  /** The current indentation string for traces */
  private var _indent: String = ""
  protected def indent = _indent
  protected def indent_=(value: String) = _indent = value

  /** Perform operation `p` on arguments `tp1`, `arg2` and print trace of computation. */
  protected def explain[T](op: String, p: (Type, T) => Boolean, tp1: Type, arg2: T): Boolean = {
    inform(indent + tp1 + " " + op + " " + arg2 + "?" /* + "("+tp1.getClass+","+arg2.getClass+")"*/)
    indent = indent + "  "
    val result = p(tp1, arg2)
    indent = indent stripSuffix "  "
    inform(indent + result)
    result
  }

  /** If option `explaintypes` is set, print a subtype trace for `found <:< required`. */
  def explainTypes(found: Type, required: Type) {
    if (settings.explaintypes) withTypesExplained(found <:< required)
  }

  /** If option `explaintypes` is set, print a subtype trace for `op(found, required)`. */
  def explainTypes(op: (Type, Type) => Any, found: Type, required: Type) {
    if (settings.explaintypes) withTypesExplained(op(found, required))
  }

  /** Execute `op` while printing a trace of the operations on types executed. */
  def withTypesExplained[A](op: => A): A = {
    val s = explainSwitch
    try { explainSwitch = true; op } finally { explainSwitch = s }
  }

  def isUnboundedGeneric(tp: Type) = tp match {
    case t @ TypeRef(_, sym, _) => sym.isAbstractType && !(t <:< AnyRefTpe)
    case _                      => false
  }
  def isBoundedGeneric(tp: Type) = tp match {
    case TypeRef(_, sym, _) if sym.isAbstractType => (tp <:< AnyRefTpe)
    case TypeRef(_, sym, _)                       => !isPrimitiveValueClass(sym)
    case _                                        => false
  }
  // Add serializable to a list of parents, unless one of them already is
  def addSerializable(ps: Type*): List[Type] = (
    if (ps exists typeIsSubTypeOfSerializable) ps.toList
    else (ps :+ SerializableTpe).toList
  )

  /** Adds the @uncheckedBound annotation if the given `tp` has type arguments */
  final def uncheckedBounds(tp: Type): Type = {
    if (tp.typeArgs.isEmpty || UncheckedBoundsClass == NoSymbol) tp // second condition for backwards compatibility with older scala-reflect.jar
    else tp.withAnnotation(AnnotationInfo marker UncheckedBoundsClass.tpe)
  }

  /** Members of the given class, other than those inherited
   *  from Any or AnyRef.
   */
  def nonTrivialMembers(clazz: Symbol): Scope = clazz.info.members filterNot isUniversalMember

  /** Members which can be imported into other scopes.
   */
  def importableMembers(pre: Type): Scope = pre.members filter isImportable

  def objToAny(tp: Type): Type =
    if (!phase.erasedTypes && tp.typeSymbol == ObjectClass) AnyTpe
    else tp

  def invalidateTreeTpeCaches(tree: Tree, updatedSyms: List[Symbol]) = if (updatedSyms.nonEmpty)
    for (t <- tree if t.tpe != null)
      for (tp <- t.tpe) {
        invalidateCaches(tp, updatedSyms)
      }

  def invalidateCaches(t: Type, updatedSyms: List[Symbol]) =
    t match {
      case st: SingleType   if updatedSyms.contains(st.sym) => st.invalidateSingleTypeCaches()
      case tr: TypeRef      if updatedSyms.contains(tr.sym) => tr.invalidateTypeRefCaches()
      case ct: CompoundType if ct.baseClasses.exists(updatedSyms.contains) => ct.invalidatedCompoundTypeCaches()
      case _ =>
    }


  val shorthands = Set(
    "scala.collection.immutable.List",
    "scala.collection.immutable.Nil",
    "scala.collection.Seq",
    "scala.collection.Traversable",
    "scala.collection.Iterable",
    "scala.collection.mutable.StringBuilder",
    "scala.collection.IndexedSeq",
    "scala.collection.Iterator")

// ----- Hoisted closures and convenience methods, for compile time reductions -------

  private[scala] val isTypeVar = (tp: Type) => tp.isInstanceOf[TypeVar]
  private[scala] val typeContainsTypeVar = (tp: Type) => tp exists isTypeVar
  private[scala] val typeIsNonClassType = (tp: Type) => tp.typeSymbolDirect.isNonClassType
  private[scala] val typeIsExistentiallyBound = (tp: Type) => tp.typeSymbol.isExistentiallyBound
  private[scala] val typeIsErroneous = (tp: Type) => tp.isErroneous
  private[scala] val symTypeIsError = (sym: Symbol) => sym.tpe.isError
  private[scala] val treeTpe = (t: Tree) => t.tpe
  private[scala] val symTpe = (sym: Symbol) => sym.tpe
  private[scala] val symInfo = (sym: Symbol) => sym.info
  private[scala] val typeHasAnnotations = (tp: Type) => tp.annotations ne Nil
  private[scala] val boundsContainType = (bounds: TypeBounds, tp: Type) => bounds containsType tp
  private[scala] val typeListIsEmpty = (ts: List[Type]) => ts.isEmpty
  private[scala] val typeIsSubTypeOfSerializable = (tp: Type) => tp <:< SerializableTpe
  private[scala] val typeIsNothing = (tp: Type) => tp.typeSymbolDirect eq NothingClass
  private[scala] val typeIsAny = (tp: Type) => tp.typeSymbolDirect eq AnyClass
  private[scala] val typeIsHigherKinded = (tp: Type) => tp.isHigherKinded

  /** The maximum depth of type `tp` */
  def typeDepth(tp: Type): Depth = tp match {
    case TypeRef(pre, sym, args)          => typeDepth(pre) max typeDepth(args).incr
    case RefinedType(parents, decls)      => typeDepth(parents) max symTypeDepth(decls.toList).incr
    case TypeBounds(lo, hi)               => typeDepth(lo) max typeDepth(hi)
    case MethodType(paramtypes, result)   => typeDepth(result)
    case NullaryMethodType(result)        => typeDepth(result)
    case PolyType(tparams, result)        => typeDepth(result) max symTypeDepth(tparams).incr
    case ExistentialType(tparams, result) => typeDepth(result) max symTypeDepth(tparams).incr
    case _                                => Depth(1)
  }

  //OPT replaced with tail recursive function to save on #closures
  // was:
  //    var d = 0
  //    for (tp <- tps) d = d max by(tp) //!!!OPT!!!
  //    d
  private[scala] def maxDepth(tps: List[Type]): Depth = {
    @tailrec def loop(tps: List[Type], acc: Depth): Depth = tps match {
      case tp :: rest => loop(rest, acc max typeDepth(tp))
      case _          => acc
    }
    loop(tps, Depth.Zero)
  }
  private[scala] def maxbaseTypeSeqDepth(tps: List[Type]): Depth = {
    @tailrec def loop(tps: List[Type], acc: Depth): Depth = tps match {
      case tp :: rest => loop(rest, acc max tp.baseTypeSeqDepth)
      case _          => acc
    }
    loop(tps, Depth.Zero)
  }

  @tailrec private def typesContain(tps: List[Type], sym: Symbol): Boolean = tps match {
    case tp :: rest => (tp contains sym) || typesContain(rest, sym)
    case _ => false
  }

  @tailrec private def areTrivialTypes(tps: List[Type]): Boolean = tps match {
    case tp :: rest => tp.isTrivial && areTrivialTypes(rest)
    case _ => true
  }

// -------------- Classtags --------------------------------------------------------

  implicit val AnnotatedTypeTag = ClassTag[AnnotatedType](classOf[AnnotatedType])
  implicit val BoundedWildcardTypeTag = ClassTag[BoundedWildcardType](classOf[BoundedWildcardType])
  implicit val ClassInfoTypeTag = ClassTag[ClassInfoType](classOf[ClassInfoType])
  implicit val CompoundTypeTag = ClassTag[CompoundType](classOf[CompoundType])
  implicit val ConstantTypeTag = ClassTag[ConstantType](classOf[ConstantType])
  implicit val ExistentialTypeTag = ClassTag[ExistentialType](classOf[ExistentialType])
  implicit val MethodTypeTag = ClassTag[MethodType](classOf[MethodType])
  implicit val NullaryMethodTypeTag = ClassTag[NullaryMethodType](classOf[NullaryMethodType])
  implicit val PolyTypeTag = ClassTag[PolyType](classOf[PolyType])
  implicit val RefinedTypeTag = ClassTag[RefinedType](classOf[RefinedType])
  implicit val SingletonTypeTag = ClassTag[SingletonType](classOf[SingletonType])
  implicit val SingleTypeTag = ClassTag[SingleType](classOf[SingleType])
  implicit val SuperTypeTag = ClassTag[SuperType](classOf[SuperType])
  implicit val ThisTypeTag = ClassTag[ThisType](classOf[ThisType])
  implicit val TypeBoundsTag = ClassTag[TypeBounds](classOf[TypeBounds])
  implicit val TypeRefTag = ClassTag[TypeRef](classOf[TypeRef])
  implicit val TypeTagg = ClassTag[Type](classOf[Type])

// -------------- Statistics --------------------------------------------------------

  Statistics.newView("#unique types") { if (uniques == null) 0 else uniques.size }

}

object TypeConstants {
  final val DefaultLogThreshhold         = 50
  final val LogPendingBaseTypesThreshold = DefaultLogThreshhold
  final val LogVolatileThreshold         = DefaultLogThreshhold
}

object TypesStats {
  import BaseTypeSeqsStats._
  val rawTypeCount        = Statistics.newCounter   ("#raw type creations")
  val subtypeCount        = Statistics.newCounter   ("#subtype ops")
  val sametypeCount       = Statistics.newCounter   ("#sametype ops")
  val lubCount            = Statistics.newCounter   ("#toplevel lubs/glbs")
  val nestedLubCount      = Statistics.newCounter   ("#all lubs/glbs")
  val findMemberCount     = Statistics.newCounter   ("#findMember ops")
  val findMembersCount    = Statistics.newCounter   ("#findMembers ops")
  val noMemberCount       = Statistics.newSubCounter("  of which not found", findMemberCount)
  val multMemberCount     = Statistics.newSubCounter("  of which multiple overloaded", findMemberCount)
  val typerNanos          = Statistics.newTimer     ("time spent typechecking", "typer")
  val lubNanos            = Statistics.newStackableTimer("time spent in lubs", typerNanos)
  val subtypeNanos        = Statistics.newStackableTimer("time spent in <:<", typerNanos)
  val findMemberNanos     = Statistics.newStackableTimer("time spent in findmember", typerNanos)
  val findMembersNanos    = Statistics.newStackableTimer("time spent in findmembers", typerNanos)
  val asSeenFromNanos     = Statistics.newStackableTimer("time spent in asSeenFrom", typerNanos)
  val baseTypeSeqNanos    = Statistics.newStackableTimer("time spent in baseTypeSeq", typerNanos)
  val baseClassesNanos    = Statistics.newStackableTimer("time spent in baseClasses", typerNanos)
  val compoundBaseTypeSeqCount = Statistics.newSubCounter("  of which for compound types", baseTypeSeqCount)
  val typerefBaseTypeSeqCount = Statistics.newSubCounter("  of which for typerefs", baseTypeSeqCount)
  val singletonBaseTypeSeqCount = Statistics.newSubCounter("  of which for singletons", baseTypeSeqCount)
  val typeOpsStack = Statistics.newTimerStack()

  /* Commented out, because right now this does not inline, so creates a closure which will distort statistics
  @inline final def timedTypeOp[T](c: Statistics.StackableTimer)(op: => T): T = {
    val start = Statistics.pushTimer(typeOpsStack, c)
    try op
    finally
  }
  */
}