summaryrefslogtreecommitdiff
path: root/test/scalacheck/redblacktree.scala
blob: 09c3839752420be3c37a2f83f1022a049f568877 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
package scala.collection.immutable.redblacktree

import collection.immutable.{RedBlackTree => RB}
import org.scalacheck._
import Prop._
import Gen._

/*
Properties of a Red & Black Tree:

A node is either red or black.
The root is black. (This rule is used in some definitions and not others. Since the
root can always be changed from red to black but not necessarily vice-versa this
rule has little effect on analysis.)
All leaves are black.
Both children of every red node are black.
Every simple path from a given node to any of its descendant leaves contains the same number of black nodes.
*/

abstract class RedBlackTreeTest extends Properties("RedBlackTree") {
  def minimumSize = 0
  def maximumSize = 5

  import RB._

  def nodeAt[A](tree: Tree[String, A], n: Int): Option[(String, A)] = if (n < iterator(tree).size && n >= 0)
    Some(iterator(tree).drop(n).next)
  else
    None

  def treeContains[A](tree: Tree[String, A], key: String) = iterator(tree).map(_._1) contains key

  def height(tree: Tree[_, _]): Int = if (tree eq null) 0 else (1 + math.max(height(tree.left), height(tree.right)))

  def mkTree(level: Int, parentIsBlack: Boolean = false, label: String = ""): Gen[Tree[String, Int]] =
    if (level == 0) {
      const(null)
    } else {
      for {
        oddOrEven <- choose(0, 2)
        tryRed = oddOrEven.sample.get % 2 == 0 // work around arbitrary[Boolean] bug
        isRed = parentIsBlack && tryRed
        nextLevel = if (isRed) level else level - 1
        left <- mkTree(nextLevel, !isRed, label + "L")
        right <- mkTree(nextLevel, !isRed, label + "R")
      } yield {
        if (isRed)
          RedTree(label + "N", 0, left, right)
        else
          BlackTree(label + "N", 0, left, right)
      }
    }

  def genTree = for {
    depth <- choose(minimumSize, maximumSize + 1)
    tree <- mkTree(depth)
  } yield tree

  type ModifyParm
  def genParm(tree: Tree[String, Int]): Gen[ModifyParm]
  def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int]

  def genInput: Gen[(Tree[String, Int], ModifyParm, Tree[String, Int])] = for {
    tree <- genTree
    parm <- genParm(tree)
  } yield (tree, parm, modify(tree, parm))
}

trait RedBlackTreeInvariants {
  self: RedBlackTreeTest =>

  import RB._

  def rootIsBlack[A](t: Tree[String, A]) = isBlack(t)

  def areAllLeavesBlack[A](t: Tree[String, A]): Boolean = t match {
    case null => isBlack(t)
    case ne => List(ne.left, ne.right) forall areAllLeavesBlack
  }

  def areRedNodeChildrenBlack[A](t: Tree[String, A]): Boolean = t match {
    case RedTree(_, _, left, right) => List(left, right) forall (t => isBlack(t) && areRedNodeChildrenBlack(t))
    case BlackTree(_, _, left, right) => List(left, right) forall areRedNodeChildrenBlack
    case null => true
  }

  def blackNodesToLeaves[A](t: Tree[String, A]): List[Int] = t match {
    case null => List(1)
    case BlackTree(_, _, left, right) => List(left, right) flatMap blackNodesToLeaves map (_ + 1)
    case RedTree(_, _, left, right) => List(left, right) flatMap blackNodesToLeaves
  }

  def areBlackNodesToLeavesEqual[A](t: Tree[String, A]): Boolean = t match {
    case null => true
    case ne =>
      (
        blackNodesToLeaves(ne).distinct.size == 1
        && areBlackNodesToLeavesEqual(ne.left)
        && areBlackNodesToLeavesEqual(ne.right)
      )
  }

  def orderIsPreserved[A](t: Tree[String, A]): Boolean =
    iterator(t) zip iterator(t).drop(1) forall { case (x, y) => x._1 < y._1 }

  def heightIsBounded(t: Tree[_, _]): Boolean = height(t) <= (2 * (32 - Integer.numberOfLeadingZeros(count(t) + 2)) - 2)

  def setup(invariant: Tree[String, Int] => Boolean) = forAll(genInput) { case (tree, parm, newTree) =>
    invariant(newTree)
  }

  property("root is black") = setup(rootIsBlack)
  property("all leaves are black") = setup(areAllLeavesBlack)
  property("children of red nodes are black") = setup(areRedNodeChildrenBlack)
  property("black nodes are balanced") = setup(areBlackNodesToLeavesEqual)
  property("ordering of keys is preserved") = setup(orderIsPreserved)
  property("height is bounded") = setup(heightIsBounded)
}

object TestInsert extends RedBlackTreeTest with RedBlackTreeInvariants {
  import RB._

  override type ModifyParm = Int
  override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size + 1)
  override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = update(tree, generateKey(tree, parm), 0, true)

  def generateKey(tree: Tree[String, Int], parm: ModifyParm): String = nodeAt(tree, parm) match {
    case Some((key, _)) => key.init.mkString + "MN"
    case None => nodeAt(tree, parm - 1) match {
      case Some((key, _)) => key.init.mkString + "RN"
      case None  => "N"
    }
  }

  property("update adds elements") = forAll(genInput) { case (tree, parm, newTree) =>
    treeContains(newTree, generateKey(tree, parm))
  }
}

object TestModify extends RedBlackTreeTest {
  import RB._

  def newValue = 1
  override def minimumSize = 1
  override type ModifyParm = Int
  override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size)
  override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = nodeAt(tree, parm) map {
    case (key, _) => update(tree, key, newValue, true)
  } getOrElse tree

  property("update modifies values") = forAll(genInput) { case (tree, parm, newTree) =>
    nodeAt(tree,parm) forall { case (key, _) =>
      iterator(newTree) contains (key, newValue)
    }
  }
}

object TestDelete extends RedBlackTreeTest with RedBlackTreeInvariants  {
  import RB._

  override def minimumSize = 1
  override type ModifyParm = Int
  override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size)
  override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = nodeAt(tree, parm) map {
    case (key, _) => delete(tree, key)
  } getOrElse tree

  property("delete removes elements") = forAll(genInput) { case (tree, parm, newTree) =>
    nodeAt(tree, parm) forall { case (key, _) =>
      !treeContains(newTree, key)
    }
  }
}

object TestRange extends RedBlackTreeTest with RedBlackTreeInvariants  {
  import RB._

  override type ModifyParm = (Option[Int], Option[Int])
  override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = for {
    from <- choose(0, iterator(tree).size)
    to <- choose(0, iterator(tree).size) suchThat (from <=)
    optionalFrom <- oneOf(Some(from), None, Some(from)) // Double Some(n) to get around a bug
    optionalTo <- oneOf(Some(to), None, Some(to)) // Double Some(n) to get around a bug
  } yield (optionalFrom, optionalTo)

  override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = {
    val from = parm._1 flatMap (nodeAt(tree, _) map (_._1))
    val to = parm._2 flatMap (nodeAt(tree, _) map (_._1))
    rangeImpl(tree, from, to)
  }

  property("range boundaries respected") = forAll(genInput) { case (tree, parm, newTree) =>
    val from = parm._1 flatMap (nodeAt(tree, _) map (_._1))
    val to = parm._2 flatMap (nodeAt(tree, _) map (_._1))
    ("lower boundary" |: (from forall ( key => keysIterator(newTree) forall (key <=)))) &&
    ("upper boundary" |: (to forall ( key => keysIterator(newTree) forall (key >))))
  }

  property("range returns all elements") = forAll(genInput) { case (tree, parm, newTree) =>
    val from = parm._1 flatMap (nodeAt(tree, _) map (_._1))
    val to = parm._2 flatMap (nodeAt(tree, _) map (_._1))
    val filteredTree = (keysIterator(tree)
      .filter(key => from forall (key >=))
      .filter(key => to forall (key <))
      .toList)
    filteredTree == keysIterator(newTree).toList
  }
}

object TestDrop extends RedBlackTreeTest with RedBlackTreeInvariants  {
  import RB._

  override type ModifyParm = Int
  override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size)
  override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = drop(tree, parm)

  property("drop") = forAll(genInput) { case (tree, parm, newTree) =>
    iterator(tree).drop(parm).toList == iterator(newTree).toList
  }
}

object TestTake extends RedBlackTreeTest with RedBlackTreeInvariants  {
  import RB._

  override type ModifyParm = Int
  override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size)
  override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = take(tree, parm)

  property("take") = forAll(genInput) { case (tree, parm, newTree) =>
    iterator(tree).take(parm).toList == iterator(newTree).toList
  }
}

object TestSlice extends RedBlackTreeTest with RedBlackTreeInvariants  {
  import RB._

  override type ModifyParm = (Int, Int)
  override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = for {
    from <- choose(0, iterator(tree).size)
    to <- choose(from, iterator(tree).size)
  } yield (from, to)
  override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = slice(tree, parm._1, parm._2)

  property("slice") = forAll(genInput) { case (tree, parm, newTree) =>
    iterator(tree).slice(parm._1, parm._2).toList == iterator(newTree).toList
  }
}