aboutsummaryrefslogtreecommitdiff
path: root/mllib/src/main
diff options
context:
space:
mode:
authorHolden Karau <holden@pigscanfly.ca>2015-08-04 18:15:26 -0700
committerJoseph K. Bradley <joseph@databricks.com>2015-08-04 18:15:26 -0700
commitd92fa14179287c996407d9c7d249103109f9cdef (patch)
treec7b0cf69980dbafad77fa675d53270d49680ba1a /mllib/src/main
parent629e26f7ee916e70f59b017cb6083aa441b26b2c (diff)
downloadspark-d92fa14179287c996407d9c7d249103109f9cdef.tar.gz
spark-d92fa14179287c996407d9c7d249103109f9cdef.tar.bz2
spark-d92fa14179287c996407d9c7d249103109f9cdef.zip
[SPARK-8601] [ML] Add an option to disable standardization for linear regression
All compressed sensing applications, and some of the regression use-cases will have better result by turning the feature scaling off. However, if we implement this naively by training the dataset without doing any standardization, the rate of convergency will not be good. This can be implemented by still standardizing the training dataset but we penalize each component differently to get effectively the same objective function but a better numerical problem. As a result, for those columns with high variances, they will be penalized less, and vice versa. Without this, since all the features are standardized, so they will be penalized the same. In R, there is an option for this. standardize Logical flag for x variable standardization, prior to fitting the model sequence. The coefficients are always returned on the original scale. Default is standardize=TRUE. If variables are in the same units already, you might not wish to standardize. See details below for y standardization with family="gaussian". Note that the primary author for this PR is holdenk Author: Holden Karau <holden@pigscanfly.ca> Author: DB Tsai <dbt@netflix.com> Closes #7875 from dbtsai/SPARK-8522 and squashes the following commits: e856036 [DB Tsai] scala doc 596e96c [DB Tsai] minor bbff347 [DB Tsai] naming baa0805 [DB Tsai] touch up d6234ba [DB Tsai] Merge branch 'master' into SPARK-8522-Disable-Linear_featureScaling-Spark-8601-in-Linear_regression 6b1dc09 [Holden Karau] Merge branch 'master' into SPARK-8522-Disable-Linear_featureScaling-Spark-8601-in-Linear_regression 332f140 [Holden Karau] Merge in master eebe10a [Holden Karau] Use same comparision operator throughout the test 3f92935 [Holden Karau] merge b83a41e [Holden Karau] Expand the tests and make them similar to the other PR also providing an option to disable standardization (but for LoR). 0c334a2 [Holden Karau] Remove extra line 99ce053 [Holden Karau] merge in master e54a8a9 [Holden Karau] Fix long line e47c574 [Holden Karau] Add support for L2 without standardization. 55d3a66 [Holden Karau] Add standardization param for linear regression 00a1dc5 [Holden Karau] Add the param to the linearregression impl
Diffstat (limited to 'mllib/src/main')
-rw-r--r--mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala6
-rw-r--r--mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala70
2 files changed, 63 insertions, 13 deletions
diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
index c937b9602b..0d07383925 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
@@ -133,9 +133,9 @@ class LogisticRegression(override val uid: String)
/**
* Whether to standardize the training features before fitting the model.
* The coefficients of models will be always returned on the original scale,
- * so it will be transparent for users. Note that when no regularization,
- * with or without standardization, the models should be always converged to
- * the same solution.
+ * so it will be transparent for users. Note that with/without standardization,
+ * the models should be always converged to the same solution when no regularization
+ * is applied. In R's GLMNET package, the default behavior is true as well.
* Default is true.
* @group setParam
* */
diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala
index 3b85ba001b..92d819bad8 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala
@@ -45,7 +45,7 @@ import org.apache.spark.util.StatCounter
*/
private[regression] trait LinearRegressionParams extends PredictorParams
with HasRegParam with HasElasticNetParam with HasMaxIter with HasTol
- with HasFitIntercept
+ with HasFitIntercept with HasStandardization
/**
* :: Experimental ::
@@ -85,6 +85,18 @@ class LinearRegression(override val uid: String)
setDefault(fitIntercept -> true)
/**
+ * Whether to standardize the training features before fitting the model.
+ * The coefficients of models will be always returned on the original scale,
+ * so it will be transparent for users. Note that with/without standardization,
+ * the models should be always converged to the same solution when no regularization
+ * is applied. In R's GLMNET package, the default behavior is true as well.
+ * Default is true.
+ * @group setParam
+ */
+ def setStandardization(value: Boolean): this.type = set(standardization, value)
+ setDefault(standardization -> true)
+
+ /**
* Set the ElasticNet mixing parameter.
* For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.
* For 0 < alpha < 1, the penalty is a combination of L1 and L2.
@@ -165,12 +177,24 @@ class LinearRegression(override val uid: String)
val effectiveL2RegParam = (1.0 - $(elasticNetParam)) * effectiveRegParam
val costFun = new LeastSquaresCostFun(instances, yStd, yMean, $(fitIntercept),
- featuresStd, featuresMean, effectiveL2RegParam)
+ $(standardization), featuresStd, featuresMean, effectiveL2RegParam)
val optimizer = if ($(elasticNetParam) == 0.0 || effectiveRegParam == 0.0) {
new BreezeLBFGS[BDV[Double]]($(maxIter), 10, $(tol))
} else {
- new BreezeOWLQN[Int, BDV[Double]]($(maxIter), 10, effectiveL1RegParam, $(tol))
+ def effectiveL1RegFun = (index: Int) => {
+ if ($(standardization)) {
+ effectiveL1RegParam
+ } else {
+ // If `standardization` is false, we still standardize the data
+ // to improve the rate of convergence; as a result, we have to
+ // perform this reverse standardization by penalizing each component
+ // differently to get effectively the same objective function when
+ // the training dataset is not standardized.
+ if (featuresStd(index) != 0.0) effectiveL1RegParam / featuresStd(index) else 0.0
+ }
+ }
+ new BreezeOWLQN[Int, BDV[Double]]($(maxIter), 10, effectiveL1RegFun, $(tol))
}
val initialWeights = Vectors.zeros(numFeatures)
@@ -456,6 +480,7 @@ class LinearRegressionSummary private[regression] (
* @param weights The weights/coefficients corresponding to the features.
* @param labelStd The standard deviation value of the label.
* @param labelMean The mean value of the label.
+ * @param fitIntercept Whether to fit an intercept term.
* @param featuresStd The standard deviation values of the features.
* @param featuresMean The mean values of the features.
*/
@@ -568,6 +593,7 @@ private class LeastSquaresCostFun(
labelStd: Double,
labelMean: Double,
fitIntercept: Boolean,
+ standardization: Boolean,
featuresStd: Array[Double],
featuresMean: Array[Double],
effectiveL2regParam: Double) extends DiffFunction[BDV[Double]] {
@@ -584,14 +610,38 @@ private class LeastSquaresCostFun(
case (aggregator1, aggregator2) => aggregator1.merge(aggregator2)
})
- // regVal is the sum of weight squares for L2 regularization
- val norm = brzNorm(weights, 2.0)
- val regVal = 0.5 * effectiveL2regParam * norm * norm
+ val totalGradientArray = leastSquaresAggregator.gradient.toArray
- val loss = leastSquaresAggregator.loss + regVal
- val gradient = leastSquaresAggregator.gradient
- axpy(effectiveL2regParam, w, gradient)
+ val regVal = if (effectiveL2regParam == 0.0) {
+ 0.0
+ } else {
+ var sum = 0.0
+ w.foreachActive { (index, value) =>
+ // The following code will compute the loss of the regularization; also
+ // the gradient of the regularization, and add back to totalGradientArray.
+ sum += {
+ if (standardization) {
+ totalGradientArray(index) += effectiveL2regParam * value
+ value * value
+ } else {
+ if (featuresStd(index) != 0.0) {
+ // If `standardization` is false, we still standardize the data
+ // to improve the rate of convergence; as a result, we have to
+ // perform this reverse standardization by penalizing each component
+ // differently to get effectively the same objective function when
+ // the training dataset is not standardized.
+ val temp = value / (featuresStd(index) * featuresStd(index))
+ totalGradientArray(index) += effectiveL2regParam * temp
+ value * temp
+ } else {
+ 0.0
+ }
+ }
+ }
+ }
+ 0.5 * effectiveL2regParam * sum
+ }
- (loss, gradient.toBreeze.asInstanceOf[BDV[Double]])
+ (leastSquaresAggregator.loss + regVal, new BDV(totalGradientArray))
}
}