aboutsummaryrefslogtreecommitdiff
path: root/core/src/test/scala/org/apache/spark/rdd/RDDSuite.scala
blob: 24acbed4d7258c1c3f84012df89b5e1ce0ecbf9a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import java.io.{IOException, ObjectInputStream, ObjectOutputStream}

import scala.collection.JavaConverters._
import scala.collection.mutable.{ArrayBuffer, HashMap}
import scala.reflect.ClassTag

import com.esotericsoftware.kryo.KryoException

import org.apache.spark._
import org.apache.spark.api.java.{JavaRDD, JavaSparkContext}
import org.apache.spark.rdd.RDDSuiteUtils._
import org.apache.spark.util.Utils

class RDDSuite extends SparkFunSuite with SharedSparkContext {

  test("basic operations") {
    val nums = sc.makeRDD(Array(1, 2, 3, 4), 2)
    assert(nums.getNumPartitions === 2)
    assert(nums.collect().toList === List(1, 2, 3, 4))
    assert(nums.toLocalIterator.toList === List(1, 2, 3, 4))
    val dups = sc.makeRDD(Array(1, 1, 2, 2, 3, 3, 4, 4), 2)
    assert(dups.distinct().count() === 4)
    assert(dups.distinct().count === 4)  // Can distinct and count be called without parentheses?
    assert(dups.distinct().collect === dups.distinct().collect)
    assert(dups.distinct(2).collect === dups.distinct().collect)
    assert(nums.reduce(_ + _) === 10)
    assert(nums.fold(0)(_ + _) === 10)
    assert(nums.map(_.toString).collect().toList === List("1", "2", "3", "4"))
    assert(nums.filter(_ > 2).collect().toList === List(3, 4))
    assert(nums.flatMap(x => 1 to x).collect().toList === List(1, 1, 2, 1, 2, 3, 1, 2, 3, 4))
    assert(nums.union(nums).collect().toList === List(1, 2, 3, 4, 1, 2, 3, 4))
    assert(nums.glom().map(_.toList).collect().toList === List(List(1, 2), List(3, 4)))
    assert(nums.collect({ case i if i >= 3 => i.toString }).collect().toList === List("3", "4"))
    assert(nums.keyBy(_.toString).collect().toList === List(("1", 1), ("2", 2), ("3", 3), ("4", 4)))
    assert(!nums.isEmpty())
    assert(nums.max() === 4)
    assert(nums.min() === 1)
    val partitionSums = nums.mapPartitions(iter => Iterator(iter.reduceLeft(_ + _)))
    assert(partitionSums.collect().toList === List(3, 7))

    val partitionSumsWithSplit = nums.mapPartitionsWithIndex {
      case(split, iter) => Iterator((split, iter.reduceLeft(_ + _)))
    }
    assert(partitionSumsWithSplit.collect().toList === List((0, 3), (1, 7)))

    val partitionSumsWithIndex = nums.mapPartitionsWithIndex {
      case(split, iter) => Iterator((split, iter.reduceLeft(_ + _)))
    }
    assert(partitionSumsWithIndex.collect().toList === List((0, 3), (1, 7)))

    intercept[UnsupportedOperationException] {
      nums.filter(_ > 5).reduce(_ + _)
    }
  }

  test("serialization") {
    val empty = new EmptyRDD[Int](sc)
    val serial = Utils.serialize(empty)
    val deserial: EmptyRDD[Int] = Utils.deserialize(serial)
    assert(!deserial.toString().isEmpty())
  }

  test("countApproxDistinct") {

    def error(est: Long, size: Long): Double = math.abs(est - size) / size.toDouble

    val size = 1000
    val uniformDistro = for (i <- 1 to 5000) yield i % size
    val simpleRdd = sc.makeRDD(uniformDistro, 10)
    assert(error(simpleRdd.countApproxDistinct(8, 0), size) < 0.2)
    assert(error(simpleRdd.countApproxDistinct(12, 0), size) < 0.1)
    assert(error(simpleRdd.countApproxDistinct(0.02), size) < 0.1)
    assert(error(simpleRdd.countApproxDistinct(0.5), size) < 0.22)
  }

  test("SparkContext.union") {
    val nums = sc.makeRDD(Array(1, 2, 3, 4), 2)
    assert(sc.union(nums).collect().toList === List(1, 2, 3, 4))
    assert(sc.union(nums, nums).collect().toList === List(1, 2, 3, 4, 1, 2, 3, 4))
    assert(sc.union(Seq(nums)).collect().toList === List(1, 2, 3, 4))
    assert(sc.union(Seq(nums, nums)).collect().toList === List(1, 2, 3, 4, 1, 2, 3, 4))
  }

  test("SparkContext.union creates UnionRDD if at least one RDD has no partitioner") {
    val rddWithPartitioner = sc.parallelize(Seq(1 -> true)).partitionBy(new HashPartitioner(1))
    val rddWithNoPartitioner = sc.parallelize(Seq(2 -> true))
    val unionRdd = sc.union(rddWithNoPartitioner, rddWithPartitioner)
    assert(unionRdd.isInstanceOf[UnionRDD[_]])
  }

  test("SparkContext.union creates PartitionAwareUnionRDD if all RDDs have partitioners") {
    val rddWithPartitioner = sc.parallelize(Seq(1 -> true)).partitionBy(new HashPartitioner(1))
    val unionRdd = sc.union(rddWithPartitioner, rddWithPartitioner)
    assert(unionRdd.isInstanceOf[PartitionerAwareUnionRDD[_]])
  }

  test("PartitionAwareUnionRDD raises exception if at least one RDD has no partitioner") {
    val rddWithPartitioner = sc.parallelize(Seq(1 -> true)).partitionBy(new HashPartitioner(1))
    val rddWithNoPartitioner = sc.parallelize(Seq(2 -> true))
    intercept[IllegalArgumentException] {
      new PartitionerAwareUnionRDD(sc, Seq(rddWithNoPartitioner, rddWithPartitioner))
    }
  }

  test("partitioner aware union") {
    def makeRDDWithPartitioner(seq: Seq[Int]): RDD[Int] = {
      sc.makeRDD(seq, 1)
        .map(x => (x, null))
        .partitionBy(new HashPartitioner(2))
        .mapPartitions(_.map(_._1), true)
    }

    val nums1 = makeRDDWithPartitioner(1 to 4)
    val nums2 = makeRDDWithPartitioner(5 to 8)
    assert(nums1.partitioner == nums2.partitioner)
    assert(new PartitionerAwareUnionRDD(sc, Seq(nums1)).collect().toSet === Set(1, 2, 3, 4))

    val union = new PartitionerAwareUnionRDD(sc, Seq(nums1, nums2))
    assert(union.collect().toSet === Set(1, 2, 3, 4, 5, 6, 7, 8))
    val nums1Parts = nums1.collectPartitions()
    val nums2Parts = nums2.collectPartitions()
    val unionParts = union.collectPartitions()
    assert(nums1Parts.length === 2)
    assert(nums2Parts.length === 2)
    assert(unionParts.length === 2)
    assert((nums1Parts(0) ++ nums2Parts(0)).toList === unionParts(0).toList)
    assert((nums1Parts(1) ++ nums2Parts(1)).toList === unionParts(1).toList)
    assert(union.partitioner === nums1.partitioner)
  }

  test("UnionRDD partition serialized size should be small") {
    val largeVariable = new Array[Byte](1000 * 1000)
    val rdd1 = sc.parallelize(1 to 10, 2).map(i => largeVariable.length)
    val rdd2 = sc.parallelize(1 to 10, 3)

    val ser = SparkEnv.get.closureSerializer.newInstance()
    val union = rdd1.union(rdd2)
    // The UnionRDD itself should be large, but each individual partition should be small.
    assert(ser.serialize(union).limit() > 2000)
    assert(ser.serialize(union.partitions.head).limit() < 2000)
  }

  test("aggregate") {
    val pairs = sc.makeRDD(Array(("a", 1), ("b", 2), ("a", 2), ("c", 5), ("a", 3)))
    type StringMap = HashMap[String, Int]
    val emptyMap = new StringMap {
      override def default(key: String): Int = 0
    }
    val mergeElement: (StringMap, (String, Int)) => StringMap = (map, pair) => {
      map(pair._1) += pair._2
      map
    }
    val mergeMaps: (StringMap, StringMap) => StringMap = (map1, map2) => {
      for ((key, value) <- map2) {
        map1(key) += value
      }
      map1
    }
    val result = pairs.aggregate(emptyMap)(mergeElement, mergeMaps)
    assert(result.toSet === Set(("a", 6), ("b", 2), ("c", 5)))
  }

  test("treeAggregate") {
    val rdd = sc.makeRDD(-1000 until 1000, 10)
    def seqOp: (Long, Int) => Long = (c: Long, x: Int) => c + x
    def combOp: (Long, Long) => Long = (c1: Long, c2: Long) => c1 + c2
    for (depth <- 1 until 10) {
      val sum = rdd.treeAggregate(0L)(seqOp, combOp, depth)
      assert(sum === -1000L)
    }
  }

  test("treeReduce") {
    val rdd = sc.makeRDD(-1000 until 1000, 10)
    for (depth <- 1 until 10) {
      val sum = rdd.treeReduce(_ + _, depth)
      assert(sum === -1000)
    }
  }

  test("basic caching") {
    val rdd = sc.makeRDD(Array(1, 2, 3, 4), 2).cache()
    assert(rdd.collect().toList === List(1, 2, 3, 4))
    assert(rdd.collect().toList === List(1, 2, 3, 4))
    assert(rdd.collect().toList === List(1, 2, 3, 4))
  }

  test("caching with failures") {
    val onlySplit = new Partition { override def index: Int = 0 }
    var shouldFail = true
    val rdd = new RDD[Int](sc, Nil) {
      override def getPartitions: Array[Partition] = Array(onlySplit)
      override val getDependencies = List[Dependency[_]]()
      override def compute(split: Partition, context: TaskContext): Iterator[Int] = {
        throw new Exception("injected failure")
      }
    }.cache()
    val thrown = intercept[Exception]{
      rdd.collect()
    }
    assert(thrown.getMessage.contains("injected failure"))
  }

  test("empty RDD") {
    val empty = new EmptyRDD[Int](sc)
    assert(empty.count === 0)
    assert(empty.collect().size === 0)

    val thrown = intercept[UnsupportedOperationException]{
      empty.reduce(_ + _)
    }
    assert(thrown.getMessage.contains("empty"))

    val emptyKv = new EmptyRDD[(Int, Int)](sc)
    val rdd = sc.parallelize(1 to 2, 2).map(x => (x, x))
    assert(rdd.join(emptyKv).collect().size === 0)
    assert(rdd.rightOuterJoin(emptyKv).collect().size === 0)
    assert(rdd.leftOuterJoin(emptyKv).collect().size === 2)
    assert(rdd.fullOuterJoin(emptyKv).collect().size === 2)
    assert(rdd.cogroup(emptyKv).collect().size === 2)
    assert(rdd.union(emptyKv).collect().size === 2)
  }

  test("repartitioned RDDs") {
    val data = sc.parallelize(1 to 1000, 10)

    // Coalesce partitions
    val repartitioned1 = data.repartition(2)
    assert(repartitioned1.partitions.size == 2)
    val partitions1 = repartitioned1.glom().collect()
    assert(partitions1(0).length > 0)
    assert(partitions1(1).length > 0)
    assert(repartitioned1.collect().toSet === (1 to 1000).toSet)

    // Split partitions
    val repartitioned2 = data.repartition(20)
    assert(repartitioned2.partitions.size == 20)
    val partitions2 = repartitioned2.glom().collect()
    assert(partitions2(0).length > 0)
    assert(partitions2(19).length > 0)
    assert(repartitioned2.collect().toSet === (1 to 1000).toSet)
  }

  test("repartitioned RDDs perform load balancing") {
    // Coalesce partitions
    val input = Array.fill(1000)(1)
    val initialPartitions = 10
    val data = sc.parallelize(input, initialPartitions)

    val repartitioned1 = data.repartition(2)
    assert(repartitioned1.partitions.size == 2)
    val partitions1 = repartitioned1.glom().collect()
    // some noise in balancing is allowed due to randomization
    assert(math.abs(partitions1(0).length - 500) < initialPartitions)
    assert(math.abs(partitions1(1).length - 500) < initialPartitions)
    assert(repartitioned1.collect() === input)

    def testSplitPartitions(input: Seq[Int], initialPartitions: Int, finalPartitions: Int) {
      val data = sc.parallelize(input, initialPartitions)
      val repartitioned = data.repartition(finalPartitions)
      assert(repartitioned.partitions.size === finalPartitions)
      val partitions = repartitioned.glom().collect()
      // assert all elements are present
      assert(repartitioned.collect().sortWith(_ > _).toSeq === input.toSeq.sortWith(_ > _).toSeq)
      // assert no bucket is overloaded
      for (partition <- partitions) {
        val avg = input.size / finalPartitions
        val maxPossible = avg + initialPartitions
        assert(partition.length <=  maxPossible)
      }
    }

    testSplitPartitions(Array.fill(100)(1), 10, 20)
    testSplitPartitions(Array.fill(10000)(1) ++ Array.fill(10000)(2), 20, 100)
  }

  test("coalesced RDDs") {
    val data = sc.parallelize(1 to 10, 10)

    val coalesced1 = data.coalesce(2)
    assert(coalesced1.collect().toList === (1 to 10).toList)
    assert(coalesced1.glom().collect().map(_.toList).toList ===
      List(List(1, 2, 3, 4, 5), List(6, 7, 8, 9, 10)))

    // Check that the narrow dependency is also specified correctly
    assert(coalesced1.dependencies.head.asInstanceOf[NarrowDependency[_]].getParents(0).toList ===
      List(0, 1, 2, 3, 4))
    assert(coalesced1.dependencies.head.asInstanceOf[NarrowDependency[_]].getParents(1).toList ===
      List(5, 6, 7, 8, 9))

    val coalesced2 = data.coalesce(3)
    assert(coalesced2.collect().toList === (1 to 10).toList)
    assert(coalesced2.glom().collect().map(_.toList).toList ===
      List(List(1, 2, 3), List(4, 5, 6), List(7, 8, 9, 10)))

    val coalesced3 = data.coalesce(10)
    assert(coalesced3.collect().toList === (1 to 10).toList)
    assert(coalesced3.glom().collect().map(_.toList).toList ===
      (1 to 10).map(x => List(x)).toList)

    // If we try to coalesce into more partitions than the original RDD, it should just
    // keep the original number of partitions.
    val coalesced4 = data.coalesce(20)
    assert(coalesced4.collect().toList === (1 to 10).toList)
    assert(coalesced4.glom().collect().map(_.toList).toList ===
      (1 to 10).map(x => List(x)).toList)

    // we can optionally shuffle to keep the upstream parallel
    val coalesced5 = data.coalesce(1, shuffle = true)
    val isEquals = coalesced5.dependencies.head.rdd.dependencies.head.rdd.
      asInstanceOf[ShuffledRDD[_, _, _]] != null
    assert(isEquals)

    // when shuffling, we can increase the number of partitions
    val coalesced6 = data.coalesce(20, shuffle = true)
    assert(coalesced6.partitions.size === 20)
    assert(coalesced6.collect().toSet === (1 to 10).toSet)
  }

  test("coalesced RDDs with locality") {
    val data3 = sc.makeRDD(List((1, List("a", "c")), (2, List("a", "b", "c")), (3, List("b"))))
    val coal3 = data3.coalesce(3)
    val list3 = coal3.partitions.flatMap(_.asInstanceOf[CoalescedRDDPartition].preferredLocation)
    assert(list3.sorted === Array("a", "b", "c"), "Locality preferences are dropped")

    // RDD with locality preferences spread (non-randomly) over 6 machines, m0 through m5
    val data = sc.makeRDD((1 to 9).map(i => (i, (i to (i + 2)).map{ j => "m" + (j%6)})))
    val coalesced1 = data.coalesce(3)
    assert(coalesced1.collect().toList.sorted === (1 to 9).toList, "Data got *lost* in coalescing")

    val splits = coalesced1.glom().collect().map(_.toList).toList
    assert(splits.length === 3, "Supposed to coalesce to 3 but got " + splits.length)

    assert(splits.forall(_.length >= 1) === true, "Some partitions were empty")

    // If we try to coalesce into more partitions than the original RDD, it should just
    // keep the original number of partitions.
    val coalesced4 = data.coalesce(20)
    val listOfLists = coalesced4.glom().collect().map(_.toList).toList
    val sortedList = listOfLists.sortWith{ (x, y) => !x.isEmpty && (y.isEmpty || (x(0) < y(0))) }
    assert(sortedList === (1 to 9).
      map{x => List(x)}.toList, "Tried coalescing 9 partitions to 20 but didn't get 9 back")
  }

  test("coalesced RDDs with locality, large scale (10K partitions)") {
    // large scale experiment
    import collection.mutable
    val partitions = 10000
    val numMachines = 50
    val machines = mutable.ListBuffer[String]()
    (1 to numMachines).foreach(machines += "m" + _)
    val rnd = scala.util.Random
    for (seed <- 1 to 5) {
      rnd.setSeed(seed)

      val blocks = (1 to partitions).map { i =>
        (i, Array.fill(3)(machines(rnd.nextInt(machines.size))).toList)
      }

      val data2 = sc.makeRDD(blocks)
      val coalesced2 = data2.coalesce(numMachines * 2)

      // test that you get over 90% locality in each group
      val minLocality = coalesced2.partitions
        .map(part => part.asInstanceOf[CoalescedRDDPartition].localFraction)
        .foldLeft(1.0)((perc, loc) => math.min(perc, loc))
      assert(minLocality >= 0.90, "Expected 90% locality but got " +
        (minLocality * 100.0).toInt + "%")

      // test that the groups are load balanced with 100 +/- 20 elements in each
      val maxImbalance = coalesced2.partitions
        .map(part => part.asInstanceOf[CoalescedRDDPartition].parents.size)
        .foldLeft(0)((dev, curr) => math.max(math.abs(100 - curr), dev))
      assert(maxImbalance <= 20, "Expected 100 +/- 20 per partition, but got " + maxImbalance)

      val data3 = sc.makeRDD(blocks).map(i => i * 2) // derived RDD to test *current* pref locs
      val coalesced3 = data3.coalesce(numMachines * 2)
      val minLocality2 = coalesced3.partitions
        .map(part => part.asInstanceOf[CoalescedRDDPartition].localFraction)
        .foldLeft(1.0)((perc, loc) => math.min(perc, loc))
      assert(minLocality2 >= 0.90, "Expected 90% locality for derived RDD but got " +
        (minLocality2 * 100.0).toInt + "%")
    }
  }

  // Test for SPARK-2412 -- ensure that the second pass of the algorithm does not throw an exception
  test("coalesced RDDs with locality, fail first pass") {
    val initialPartitions = 1000
    val targetLen = 50
    val couponCount = 2 * (math.log(targetLen)*targetLen + targetLen + 0.5).toInt // = 492

    val blocks = (1 to initialPartitions).map { i =>
      (i, List(if (i > couponCount) "m2" else "m1"))
    }
    val data = sc.makeRDD(blocks)
    val coalesced = data.coalesce(targetLen)
    assert(coalesced.partitions.length == targetLen)
  }

  test("zipped RDDs") {
    val nums = sc.makeRDD(Array(1, 2, 3, 4), 2)
    val zipped = nums.zip(nums.map(_ + 1.0))
    assert(zipped.glom().map(_.toList).collect().toList ===
      List(List((1, 2.0), (2, 3.0)), List((3, 4.0), (4, 5.0))))

    intercept[IllegalArgumentException] {
      nums.zip(sc.parallelize(1 to 4, 1)).collect()
    }

    intercept[SparkException] {
      nums.zip(sc.parallelize(1 to 5, 2)).collect()
    }
  }

  test("partition pruning") {
    val data = sc.parallelize(1 to 10, 10)
    // Note that split number starts from 0, so > 8 means only 10th partition left.
    val prunedRdd = new PartitionPruningRDD(data, splitNum => splitNum > 8)
    assert(prunedRdd.partitions.size === 1)
    val prunedData = prunedRdd.collect()
    assert(prunedData.size === 1)
    assert(prunedData(0) === 10)
  }

  test("collect large number of empty partitions") {
    // Regression test for SPARK-4019
    assert(sc.makeRDD(0 until 10, 1000).repartition(2001).collect().toSet === (0 until 10).toSet)
  }

  test("take") {
    var nums = sc.makeRDD(Range(1, 1000), 1)
    assert(nums.take(0).size === 0)
    assert(nums.take(1) === Array(1))
    assert(nums.take(3) === Array(1, 2, 3))
    assert(nums.take(500) === (1 to 500).toArray)
    assert(nums.take(501) === (1 to 501).toArray)
    assert(nums.take(999) === (1 to 999).toArray)
    assert(nums.take(1000) === (1 to 999).toArray)

    nums = sc.makeRDD(Range(1, 1000), 2)
    assert(nums.take(0).size === 0)
    assert(nums.take(1) === Array(1))
    assert(nums.take(3) === Array(1, 2, 3))
    assert(nums.take(500) === (1 to 500).toArray)
    assert(nums.take(501) === (1 to 501).toArray)
    assert(nums.take(999) === (1 to 999).toArray)
    assert(nums.take(1000) === (1 to 999).toArray)

    nums = sc.makeRDD(Range(1, 1000), 100)
    assert(nums.take(0).size === 0)
    assert(nums.take(1) === Array(1))
    assert(nums.take(3) === Array(1, 2, 3))
    assert(nums.take(500) === (1 to 500).toArray)
    assert(nums.take(501) === (1 to 501).toArray)
    assert(nums.take(999) === (1 to 999).toArray)
    assert(nums.take(1000) === (1 to 999).toArray)

    nums = sc.makeRDD(Range(1, 1000), 1000)
    assert(nums.take(0).size === 0)
    assert(nums.take(1) === Array(1))
    assert(nums.take(3) === Array(1, 2, 3))
    assert(nums.take(500) === (1 to 500).toArray)
    assert(nums.take(501) === (1 to 501).toArray)
    assert(nums.take(999) === (1 to 999).toArray)
    assert(nums.take(1000) === (1 to 999).toArray)
  }

  test("top with predefined ordering") {
    val nums = Array.range(1, 100000)
    val ints = sc.makeRDD(scala.util.Random.shuffle(nums), 2)
    val topK = ints.top(5)
    assert(topK.size === 5)
    assert(topK === nums.reverse.take(5))
  }

  test("top with custom ordering") {
    val words = Vector("a", "b", "c", "d")
    implicit val ord = implicitly[Ordering[String]].reverse
    val rdd = sc.makeRDD(words, 2)
    val topK = rdd.top(2)
    assert(topK.size === 2)
    assert(topK.sorted === Array("b", "a"))
  }

  test("takeOrdered with predefined ordering") {
    val nums = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val rdd = sc.makeRDD(nums, 2)
    val sortedLowerK = rdd.takeOrdered(5)
    assert(sortedLowerK.size === 5)
    assert(sortedLowerK === Array(1, 2, 3, 4, 5))
  }

  test("takeOrdered with limit 0") {
    val nums = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val rdd = sc.makeRDD(nums, 2)
    val sortedLowerK = rdd.takeOrdered(0)
    assert(sortedLowerK.size === 0)
  }

  test("takeOrdered with custom ordering") {
    val nums = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    implicit val ord = implicitly[Ordering[Int]].reverse
    val rdd = sc.makeRDD(nums, 2)
    val sortedTopK = rdd.takeOrdered(5)
    assert(sortedTopK.size === 5)
    assert(sortedTopK === Array(10, 9, 8, 7, 6))
    assert(sortedTopK === nums.sorted(ord).take(5))
  }

  test("isEmpty") {
    assert(sc.emptyRDD.isEmpty())
    assert(sc.parallelize(Seq[Int]()).isEmpty())
    assert(!sc.parallelize(Seq(1)).isEmpty())
    assert(sc.parallelize(Seq(1, 2, 3), 3).filter(_ < 0).isEmpty())
    assert(!sc.parallelize(Seq(1, 2, 3), 3).filter(_ > 1).isEmpty())
  }

  test("sample preserves partitioner") {
    val partitioner = new HashPartitioner(2)
    val rdd = sc.parallelize(Seq((0, 1), (2, 3))).partitionBy(partitioner)
    for (withReplacement <- Seq(true, false)) {
      val sampled = rdd.sample(withReplacement, 1.0)
      assert(sampled.partitioner === rdd.partitioner)
    }
  }

  test("takeSample") {
    val n = 1000000
    val data = sc.parallelize(1 to n, 2)

    for (num <- List(5, 20, 100)) {
      val sample = data.takeSample(withReplacement = false, num = num)
      assert(sample.size === num)        // Got exactly num elements
      assert(sample.toSet.size === num)  // Elements are distinct
      assert(sample.forall(x => 1 <= x && x <= n), s"elements not in [1, $n]")
    }
    for (seed <- 1 to 5) {
      val sample = data.takeSample(withReplacement = false, 20, seed)
      assert(sample.size === 20)        // Got exactly 20 elements
      assert(sample.toSet.size === 20)  // Elements are distinct
      assert(sample.forall(x => 1 <= x && x <= n), s"elements not in [1, $n]")
    }
    for (seed <- 1 to 5) {
      val sample = data.takeSample(withReplacement = false, 100, seed)
      assert(sample.size === 100)        // Got only 100 elements
      assert(sample.toSet.size === 100)  // Elements are distinct
      assert(sample.forall(x => 1 <= x && x <= n), s"elements not in [1, $n]")
    }
    for (seed <- 1 to 5) {
      val sample = data.takeSample(withReplacement = true, 20, seed)
      assert(sample.size === 20)        // Got exactly 20 elements
      assert(sample.forall(x => 1 <= x && x <= n), s"elements not in [1, $n]")
    }
    {
      val sample = data.takeSample(withReplacement = true, num = 20)
      assert(sample.size === 20)        // Got exactly 100 elements
      assert(sample.toSet.size <= 20, "sampling with replacement returned all distinct elements")
      assert(sample.forall(x => 1 <= x && x <= n), s"elements not in [1, $n]")
    }
    {
      val sample = data.takeSample(withReplacement = true, num = n)
      assert(sample.size === n)        // Got exactly 100 elements
      // Chance of getting all distinct elements is astronomically low, so test we got < 100
      assert(sample.toSet.size < n, "sampling with replacement returned all distinct elements")
      assert(sample.forall(x => 1 <= x && x <= n), s"elements not in [1, $n]")
    }
    for (seed <- 1 to 5) {
      val sample = data.takeSample(withReplacement = true, n, seed)
      assert(sample.size === n)        // Got exactly 100 elements
      // Chance of getting all distinct elements is astronomically low, so test we got < 100
      assert(sample.toSet.size < n, "sampling with replacement returned all distinct elements")
    }
    for (seed <- 1 to 5) {
      val sample = data.takeSample(withReplacement = true, 2 * n, seed)
      assert(sample.size === 2 * n)        // Got exactly 200 elements
      // Chance of getting all distinct elements is still quite low, so test we got < 100
      assert(sample.toSet.size < n, "sampling with replacement returned all distinct elements")
    }
  }

  test("takeSample from an empty rdd") {
    val emptySet = sc.parallelize(Seq.empty[Int], 2)
    val sample = emptySet.takeSample(false, 20, 1)
    assert(sample.length === 0)
  }

  test("randomSplit") {
    val n = 600
    val data = sc.parallelize(1 to n, 2)
    for(seed <- 1 to 5) {
      val splits = data.randomSplit(Array(1.0, 2.0, 3.0), seed)
      assert(splits.size == 3, "wrong number of splits")
      assert(splits.flatMap(_.collect()).sorted.toList == data.collect().toList,
        "incomplete or wrong split")
      val s = splits.map(_.count())
      assert(math.abs(s(0) - 100) < 50) // std =  9.13
      assert(math.abs(s(1) - 200) < 50) // std = 11.55
      assert(math.abs(s(2) - 300) < 50) // std = 12.25
    }
  }

  test("runJob on an invalid partition") {
    intercept[IllegalArgumentException] {
      sc.runJob(sc.parallelize(1 to 10, 2), {iter: Iterator[Int] => iter.size}, Seq(0, 1, 2))
    }
  }

  test("sort an empty RDD") {
    val data = sc.emptyRDD[Int]
    assert(data.sortBy(x => x).collect() === Array.empty)
  }

  test("sortByKey") {
    val data = sc.parallelize(Seq("5|50|A", "4|60|C", "6|40|B"))

    val col1 = Array("4|60|C", "5|50|A", "6|40|B")
    val col2 = Array("6|40|B", "5|50|A", "4|60|C")
    val col3 = Array("5|50|A", "6|40|B", "4|60|C")

    assert(data.sortBy(_.split("\\|")(0)).collect() === col1)
    assert(data.sortBy(_.split("\\|")(1)).collect() === col2)
    assert(data.sortBy(_.split("\\|")(2)).collect() === col3)
  }

  test("sortByKey ascending parameter") {
    val data = sc.parallelize(Seq("5|50|A", "4|60|C", "6|40|B"))

    val asc = Array("4|60|C", "5|50|A", "6|40|B")
    val desc = Array("6|40|B", "5|50|A", "4|60|C")

    assert(data.sortBy(_.split("\\|")(0), true).collect() === asc)
    assert(data.sortBy(_.split("\\|")(0), false).collect() === desc)
  }

  test("sortByKey with explicit ordering") {
    val data = sc.parallelize(Seq("Bob|Smith|50",
                                  "Jane|Smith|40",
                                  "Thomas|Williams|30",
                                  "Karen|Williams|60"))

    val ageOrdered = Array("Thomas|Williams|30",
                           "Jane|Smith|40",
                           "Bob|Smith|50",
                           "Karen|Williams|60")

    // last name, then first name
    val nameOrdered = Array("Bob|Smith|50",
                            "Jane|Smith|40",
                            "Karen|Williams|60",
                            "Thomas|Williams|30")

    val parse = (s: String) => {
      val split = s.split("\\|")
      Person(split(0), split(1), split(2).toInt)
    }

    import scala.reflect.classTag
    assert(data.sortBy(parse, true, 2)(AgeOrdering, classTag[Person]).collect() === ageOrdered)
    assert(data.sortBy(parse, true, 2)(NameOrdering, classTag[Person]).collect() === nameOrdered)
  }

  test("repartitionAndSortWithinPartitions") {
    val data = sc.parallelize(Seq((0, 5), (3, 8), (2, 6), (0, 8), (3, 8), (1, 3)), 2)

    val partitioner = new Partitioner {
      def numPartitions: Int = 2
      def getPartition(key: Any): Int = key.asInstanceOf[Int] % 2
    }

    val repartitioned = data.repartitionAndSortWithinPartitions(partitioner)
    val partitions = repartitioned.glom().collect()
    assert(partitions(0) === Seq((0, 5), (0, 8), (2, 6)))
    assert(partitions(1) === Seq((1, 3), (3, 8), (3, 8)))
  }

  test("intersection") {
    val all = sc.parallelize(1 to 10)
    val evens = sc.parallelize(2 to 10 by 2)
    val intersection = Array(2, 4, 6, 8, 10)

    // intersection is commutative
    assert(all.intersection(evens).collect().sorted === intersection)
    assert(evens.intersection(all).collect().sorted === intersection)
  }

  test("intersection strips duplicates in an input") {
    val a = sc.parallelize(Seq(1, 2, 3, 3))
    val b = sc.parallelize(Seq(1, 1, 2, 3))
    val intersection = Array(1, 2, 3)

    assert(a.intersection(b).collect().sorted === intersection)
    assert(b.intersection(a).collect().sorted === intersection)
  }

  test("zipWithIndex") {
    val n = 10
    val data = sc.parallelize(0 until n, 3)
    val ranked = data.zipWithIndex()
    ranked.collect().foreach { x =>
      assert(x._1 === x._2)
    }
  }

  test("zipWithIndex with a single partition") {
    val n = 10
    val data = sc.parallelize(0 until n, 1)
    val ranked = data.zipWithIndex()
    ranked.collect().foreach { x =>
      assert(x._1 === x._2)
    }
  }

  test("zipWithIndex chained with other RDDs (SPARK-4433)") {
    val count = sc.parallelize(0 until 10, 2).zipWithIndex().repartition(4).count()
    assert(count === 10)
  }

  test("zipWithUniqueId") {
    val n = 10
    val data = sc.parallelize(0 until n, 3)
    val ranked = data.zipWithUniqueId()
    val ids = ranked.map(_._1).distinct().collect()
    assert(ids.length === n)
  }

  test("retag with implicit ClassTag") {
    val jsc: JavaSparkContext = new JavaSparkContext(sc)
    val jrdd: JavaRDD[String] = jsc.parallelize(Seq("A", "B", "C").asJava)
    jrdd.rdd.retag.collect()
  }

  test("parent method") {
    val rdd1 = sc.parallelize(1 to 10, 2)
    val rdd2 = rdd1.filter(_ % 2 == 0)
    val rdd3 = rdd2.map(_ + 1)
    val rdd4 = new UnionRDD(sc, List(rdd1, rdd2, rdd3))
    assert(rdd4.parent(0).isInstanceOf[ParallelCollectionRDD[_]])
    assert(rdd4.parent[Int](1) === rdd2)
    assert(rdd4.parent[Int](2) === rdd3)
  }

  test("getNarrowAncestors") {
    val rdd1 = sc.parallelize(1 to 100, 4)
    val rdd2 = rdd1.filter(_ % 2 == 0).map(_ + 1)
    val rdd3 = rdd2.map(_ - 1).filter(_ < 50).map(i => (i, i))
    val rdd4 = rdd3.reduceByKey(_ + _)
    val rdd5 = rdd4.mapValues(_ + 1).mapValues(_ + 2).mapValues(_ + 3)
    val ancestors1 = rdd1.getNarrowAncestors
    val ancestors2 = rdd2.getNarrowAncestors
    val ancestors3 = rdd3.getNarrowAncestors
    val ancestors4 = rdd4.getNarrowAncestors
    val ancestors5 = rdd5.getNarrowAncestors

    // Simple dependency tree with a single branch
    assert(ancestors1.size === 0)
    assert(ancestors2.size === 2)
    assert(ancestors2.count(_ === rdd1) === 1)
    assert(ancestors2.count(_.isInstanceOf[MapPartitionsRDD[_, _]]) === 1)
    assert(ancestors3.size === 5)
    assert(ancestors3.count(_.isInstanceOf[MapPartitionsRDD[_, _]]) === 4)

    // Any ancestors before the shuffle are not considered
    assert(ancestors4.size === 0)
    assert(ancestors4.count(_.isInstanceOf[ShuffledRDD[_, _, _]]) === 0)
    assert(ancestors5.size === 3)
    assert(ancestors5.count(_.isInstanceOf[ShuffledRDD[_, _, _]]) === 1)
    assert(ancestors5.count(_ === rdd3) === 0)
    assert(ancestors5.count(_.isInstanceOf[MapPartitionsRDD[_, _]]) === 2)
  }

  test("getNarrowAncestors with multiple parents") {
    val rdd1 = sc.parallelize(1 to 100, 5)
    val rdd2 = sc.parallelize(1 to 200, 10).map(_ + 1)
    val rdd3 = sc.parallelize(1 to 300, 15).filter(_ > 50)
    val rdd4 = rdd1.map(i => (i, i))
    val rdd5 = rdd2.map(i => (i, i))
    val rdd6 = sc.union(rdd1, rdd2)
    val rdd7 = sc.union(rdd1, rdd2, rdd3)
    val rdd8 = sc.union(rdd6, rdd7)
    val rdd9 = rdd4.join(rdd5)
    val ancestors6 = rdd6.getNarrowAncestors
    val ancestors7 = rdd7.getNarrowAncestors
    val ancestors8 = rdd8.getNarrowAncestors
    val ancestors9 = rdd9.getNarrowAncestors

    // Simple dependency tree with multiple branches
    assert(ancestors6.size === 3)
    assert(ancestors6.count(_.isInstanceOf[ParallelCollectionRDD[_]]) === 2)
    assert(ancestors6.count(_ === rdd2) === 1)
    assert(ancestors7.size === 5)
    assert(ancestors7.count(_.isInstanceOf[ParallelCollectionRDD[_]]) === 3)
    assert(ancestors7.count(_ === rdd2) === 1)
    assert(ancestors7.count(_ === rdd3) === 1)

    // Dependency tree with duplicate nodes (e.g. rdd1 should not be reported twice)
    assert(ancestors8.size === 7)
    assert(ancestors8.count(_ === rdd2) === 1)
    assert(ancestors8.count(_ === rdd3) === 1)
    assert(ancestors8.count(_.isInstanceOf[UnionRDD[_]]) === 2)
    assert(ancestors8.count(_.isInstanceOf[ParallelCollectionRDD[_]]) === 3)
    assert(ancestors8.count(_ == rdd1) === 1)
    assert(ancestors8.count(_ == rdd2) === 1)
    assert(ancestors8.count(_ == rdd3) === 1)

    // Any ancestors before the shuffle are not considered
    assert(ancestors9.size === 2)
    assert(ancestors9.count(_.isInstanceOf[CoGroupedRDD[_]]) === 1)
  }

  /**
   * This tests for the pathological condition in which the RDD dependency graph is cyclical.
   *
   * Since RDD is part of the public API, applications may actually implement RDDs that allow
   * such graphs to be constructed. In such cases, getNarrowAncestor should not simply hang.
   */
  test("getNarrowAncestors with cycles") {
    val rdd1 = new CyclicalDependencyRDD[Int]
    val rdd2 = new CyclicalDependencyRDD[Int]
    val rdd3 = new CyclicalDependencyRDD[Int]
    val rdd4 = rdd3.map(_ + 1).filter(_ > 10).map(_ + 2).filter(_ % 5 > 1)
    val rdd5 = rdd4.map(_ + 2).filter(_ > 20)
    val rdd6 = sc.union(rdd1, rdd2, rdd3).map(_ + 4).union(rdd5).union(rdd4)

    // Simple cyclical dependency
    rdd1.addDependency(new OneToOneDependency[Int](rdd2))
    rdd2.addDependency(new OneToOneDependency[Int](rdd1))
    val ancestors1 = rdd1.getNarrowAncestors
    val ancestors2 = rdd2.getNarrowAncestors
    assert(ancestors1.size === 1)
    assert(ancestors1.count(_ == rdd2) === 1)
    assert(ancestors1.count(_ == rdd1) === 0)
    assert(ancestors2.size === 1)
    assert(ancestors2.count(_ == rdd1) === 1)
    assert(ancestors2.count(_ == rdd2) === 0)

    // Cycle involving a longer chain
    rdd3.addDependency(new OneToOneDependency[Int](rdd4))
    val ancestors3 = rdd3.getNarrowAncestors
    val ancestors4 = rdd4.getNarrowAncestors
    assert(ancestors3.size === 4)
    assert(ancestors3.count(_.isInstanceOf[MapPartitionsRDD[_, _]]) === 4)
    assert(ancestors3.count(_ == rdd3) === 0)
    assert(ancestors4.size === 4)
    assert(ancestors4.count(_.isInstanceOf[MapPartitionsRDD[_, _]]) === 3)
    assert(ancestors4.count(_.isInstanceOf[CyclicalDependencyRDD[_]]) === 1)
    assert(ancestors4.count(_ == rdd3) === 1)
    assert(ancestors4.count(_ == rdd4) === 0)

    // Cycles that do not involve the root
    val ancestors5 = rdd5.getNarrowAncestors
    assert(ancestors5.size === 6)
    assert(ancestors5.count(_.isInstanceOf[MapPartitionsRDD[_, _]]) === 5)
    assert(ancestors5.count(_.isInstanceOf[CyclicalDependencyRDD[_]]) === 1)
    assert(ancestors4.count(_ == rdd3) === 1)

    // Complex cyclical dependency graph (combination of all of the above)
    val ancestors6 = rdd6.getNarrowAncestors
    assert(ancestors6.size === 12)
    assert(ancestors6.count(_.isInstanceOf[UnionRDD[_]]) === 2)
    assert(ancestors6.count(_.isInstanceOf[MapPartitionsRDD[_, _]]) === 7)
    assert(ancestors6.count(_.isInstanceOf[CyclicalDependencyRDD[_]]) === 3)
  }

  test("task serialization exception should not hang scheduler") {
    class BadSerializable extends Serializable {
      @throws(classOf[IOException])
      private def writeObject(out: ObjectOutputStream): Unit =
        throw new KryoException("Bad serialization")

      @throws(classOf[IOException])
      private def readObject(in: ObjectInputStream): Unit = {}
    }
    // Note that in the original bug, SPARK-4349, that this verifies, the job would only hang if
    // there were more threads in the Spark Context than there were number of objects in this
    // sequence.
    intercept[Throwable] {
      sc.parallelize(Seq(new BadSerializable, new BadSerializable)).collect()
    }
    // Check that the context has not crashed
    sc.parallelize(1 to 100).map(x => x*2).collect
  }

  /** A contrived RDD that allows the manual addition of dependencies after creation. */
  private class CyclicalDependencyRDD[T: ClassTag] extends RDD[T](sc, Nil) {
    private val mutableDependencies: ArrayBuffer[Dependency[_]] = ArrayBuffer.empty
    override def compute(p: Partition, c: TaskContext): Iterator[T] = Iterator.empty
    override def getPartitions: Array[Partition] = Array.empty
    override def getDependencies: Seq[Dependency[_]] = mutableDependencies
    def addDependency(dep: Dependency[_]) {
      mutableDependencies += dep
    }
  }

  test("nested RDDs are not supported (SPARK-5063)") {
    val rdd: RDD[Int] = sc.parallelize(1 to 100)
    val rdd2: RDD[Int] = sc.parallelize(1 to 100)
    val thrown = intercept[SparkException] {
      val nestedRDD: RDD[RDD[Int]] = rdd.mapPartitions { x => Seq(rdd2.map(x => x)).iterator }
      nestedRDD.count()
    }
    assert(thrown.getMessage.contains("SPARK-5063"))
  }

  test("actions cannot be performed inside of transformations (SPARK-5063)") {
    val rdd: RDD[Int] = sc.parallelize(1 to 100)
    val rdd2: RDD[Int] = sc.parallelize(1 to 100)
    val thrown = intercept[SparkException] {
      rdd.map(x => x * rdd2.count).collect()
    }
    assert(thrown.getMessage.contains("SPARK-5063"))
  }

  test("cannot run actions after SparkContext has been stopped (SPARK-5063)") {
    val existingRDD = sc.parallelize(1 to 100)
    sc.stop()
    val thrown = intercept[IllegalStateException] {
      existingRDD.count()
    }
    assert(thrown.getMessage.contains("shutdown"))
  }

  test("cannot call methods on a stopped SparkContext (SPARK-5063)") {
    sc.stop()
    def assertFails(block: => Any): Unit = {
      val thrown = intercept[IllegalStateException] {
        block
      }
      assert(thrown.getMessage.contains("stopped"))
    }
    assertFails { sc.parallelize(1 to 100) }
    assertFails { sc.textFile("/nonexistent-path") }
  }

}