aboutsummaryrefslogtreecommitdiff
path: root/docs/mllib-basics.md
blob: 710ce1721fe259c69bf20698a2647a6aa7872c8d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
---
layout: global
title: <a href="mllib-guide.html">MLlib</a> - Basics
---

* Table of contents
{:toc}

MLlib supports local vectors and matrices stored on a single machine, 
as well as distributed matrices backed by one or more RDDs.
In the current implementation, local vectors and matrices are simple data models 
to serve public interfaces. The underly linear algebra operations are provided by
[Breeze](http://www.scalanlp.org/) and [jblas](http://jblas.org/).
A training example used in supervised learning is called "labeled point" in MLlib.

## Local vector

A local vector has integer-typed and 0-based indices and double-typed values, stored on a single
machine.  MLlib supports two types of local vectors: dense and sparse.  A dense vector is backed by
a double array representing its entry values, while a sparse vector is backed by two parallel
arrays: indices and values.  For example, a vector $(1.0, 0.0, 3.0)$ can be represented in dense
format as `[1.0, 0.0, 3.0]` or in sparse format as `(3, [0, 2], [1.0, 3.0])`, where `3` is the size
of the vector.

<div class="codetabs">
<div data-lang="scala" markdown="1">

The base class of local vectors is
[`Vector`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector), and we provide two
implementations: [`DenseVector`](api/mllib/index.html#org.apache.spark.mllib.linalg.DenseVector) and
[`SparseVector`](api/mllib/index.html#org.apache.spark.mllib.linalg.SparseVector).  We recommend
using the factory methods implemented in
[`Vectors`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector) to create local vectors.

{% highlight scala %}
import org.apache.spark.mllib.linalg.{Vector, Vectors}

// Create a dense vector (1.0, 0.0, 3.0).
val dv: Vector = Vectors.dense(1.0, 0.0, 3.0)
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries.
val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its nonzero entries.
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0)))
{% endhighlight %}

***Note***

Scala imports `scala.collection.immutable.Vector` by default, so you have to import
`org.apache.spark.mllib.linalg.Vector` explicitly to use MLlib's `Vector`.

</div>

<div data-lang="java" markdown="1">

The base class of local vectors is
[`Vector`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector), and we provide two
implementations: [`DenseVector`](api/mllib/index.html#org.apache.spark.mllib.linalg.DenseVector) and
[`SparseVector`](api/mllib/index.html#org.apache.spark.mllib.linalg.SparseVector).  We recommend
using the factory methods implemented in
[`Vectors`](api/mllib/index.html#org.apache.spark.mllib.linalg.Vector) to create local vectors.

{% highlight java %}
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;

// Create a dense vector (1.0, 0.0, 3.0).
Vector dv = Vectors.dense(1.0, 0.0, 3.0);
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries.
Vector sv = Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0});
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
MLlib recognizes the following types as dense vectors:

* NumPy's [`array`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html)
* Python's list, e.g., `[1, 2, 3]`

and the following as sparse vectors:

* MLlib's [`SparseVector`](api/pyspark/pyspark.mllib.linalg.SparseVector-class.html).
* SciPy's
  [`csc_matrix`](http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix)
  with a single column

We recommend using NumPy arrays over lists for efficiency, and using the factory methods implemented
in [`Vectors`](api/pyspark/pyspark.mllib.linalg.Vectors-class.html) to create sparse vectors.

{% highlight python %}
import numpy as np
import scipy.sparse as sps
from pyspark.mllib.linalg import Vectors

# Use a NumPy array as a dense vector.
dv1 = np.array([1.0, 0.0, 3.0])
# Use a Python list as a dense vector.
dv2 = [1.0, 0.0, 3.0]
# Create a SparseVector.
sv1 = Vectors.sparse(3, [0, 2], [1.0, 3.0])
# Use a single-column SciPy csc_matrix as a sparse vector.
sv2 = sps.csc_matrix((np.array([1.0, 3.0]), np.array([0, 2]), np.array([0, 2])), shape = (3, 1))
{% endhighlight %}

</div>
</div>

## Labeled point

A labeled point is a local vector, either dense or sparse, associated with a label/response.
In MLlib, labeled points are used in supervised learning algorithms.
We use a double to store a label, so we can use labeled points in both regression and classification.
For binary classification, label should be either $0$ (negative) or $1$ (positive).
For multiclass classification, labels should be class indices staring from zero: $0, 1, 2, \ldots$.

<div class="codetabs">

<div data-lang="scala" markdown="1">

A labeled point is represented by the case class
[`LabeledPoint`](api/mllib/index.html#org.apache.spark.mllib.regression.LabeledPoint).

{% highlight scala %}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint

// Create a labeled point with a positive label and a dense feature vector.
val pos = LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0))

// Create a labeled point with a negative label and a sparse feature vector.
val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)))
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">

A labeled point is represented by
[`LabeledPoint`](api/mllib/index.html#org.apache.spark.mllib.regression.LabeledPoint).

{% highlight java %}
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;

// Create a labeled point with a positive label and a dense feature vector.
LabeledPoint pos = new LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0));

// Create a labeled point with a negative label and a sparse feature vector.
LabeledPoint neg = new LabeledPoint(1.0, Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0}));
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">

A labeled point is represented by
[`LabeledPoint`](api/pyspark/pyspark.mllib.regression.LabeledPoint-class.html).

{% highlight python %}
from pyspark.mllib.linalg import SparseVector
from pyspark.mllib.regression import LabeledPoint

# Create a labeled point with a positive label and a dense feature vector.
pos = LabeledPoint(1.0, [1.0, 0.0, 3.0])

# Create a labeled point with a negative label and a sparse feature vector.
neg = LabeledPoint(0.0, SparseVector(3, [0, 2], [1.0, 3.0]))
{% endhighlight %}
</div>
</div>

***Sparse data***

It is very common in practice to have sparse training data.  MLlib supports reading training
examples stored in `LIBSVM` format, which is the default format used by
[`LIBSVM`](http://www.csie.ntu.edu.tw/~cjlin/libsvm/) and
[`LIBLINEAR`](http://www.csie.ntu.edu.tw/~cjlin/liblinear/).  It is a text format.  Each line
represents a labeled sparse feature vector using the following format:

~~~
label index1:value1 index2:value2 ...
~~~

where the indices are one-based and in ascending order. 
After loading, the feature indices are converted to zero-based.

<div class="codetabs">
<div data-lang="scala" markdown="1">

[`MLUtils.loadLibSVMData`](api/mllib/index.html#org.apache.spark.mllib.util.MLUtils$) reads training
examples stored in LIBSVM format.

{% highlight scala %}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD

val training: RDD[LabeledPoint] = MLUtils.loadLibSVMData(sc, "mllib/data/sample_libsvm_data.txt")
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
[`MLUtils.loadLibSVMData`](api/mllib/index.html#org.apache.spark.mllib.util.MLUtils$) reads training
examples stored in LIBSVM format.

{% highlight java %}
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
import org.apache.spark.rdd.RDDimport;

RDD[LabeledPoint] training = MLUtils.loadLibSVMData(sc, "mllib/data/sample_libsvm_data.txt")
{% endhighlight %}
</div>
</div>

## Local matrix

A local matrix has integer-typed row and column indices and double-typed values, stored on a single
machine.  MLlib supports dense matrix, whose entry values are stored in a single double array in
column major.  For example, the following matrix `\[ \begin{pmatrix}
1.0 & 2.0 \\
3.0 & 4.0 \\
5.0 & 6.0
\end{pmatrix}
\]`
is stored in a one-dimensional array `[1.0, 3.0, 5.0, 2.0, 4.0, 6.0]` with the matrix size `(3, 2)`.
We are going to add sparse matrix in the next release.

<div class="codetabs">
<div data-lang="scala" markdown="1">

The base class of local matrices is
[`Matrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.Matrix), and we provide one
implementation: [`DenseMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.DenseMatrix).
Sparse matrix will be added in the next release.  We recommend using the factory methods implemented
in [`Matrices`](api/mllib/index.html#org.apache.spark.mllib.linalg.Matrices) to create local
matrices.

{% highlight scala %}
import org.apache.spark.mllib.linalg.{Matrix, Matrices}

// Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
val dm: Matrix = Matrices.dense(3, 2, Array(1.0, 3.0, 5.0, 2.0, 4.0, 6.0))
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">

The base class of local matrices is
[`Matrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.Matrix), and we provide one
implementation: [`DenseMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.DenseMatrix).
Sparse matrix will be added in the next release.  We recommend using the factory methods implemented
in [`Matrices`](api/mllib/index.html#org.apache.spark.mllib.linalg.Matrices) to create local
matrices.

{% highlight java %}
import org.apache.spark.mllib.linalg.Matrix;
import org.apache.spark.mllib.linalg.Matrices;

// Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Matrix dm = Matrices.dense(3, 2, new double[] {1.0, 3.0, 5.0, 2.0, 4.0, 6.0});
{% endhighlight %}
</div>

</div>

## Distributed matrix

A distributed matrix has long-typed row and column indices and double-typed values, stored
distributively in one or more RDDs.  It is very important to choose the right format to store large
and distributed matrices.  Converting a distributed matrix to a different format may require a
global shuffle, which is quite expensive.  We implemented three types of distributed matrices in
this release and will add more types in the future.

***Note***

The underlying RDDs of a distributed matrix must be deterministic, because we cache the matrix size.
It is always error-prone to have non-deterministic RDDs.

### RowMatrix

A `RowMatrix` is a row-oriented distributed matrix without meaningful row indices, backed by an RDD
of its rows, where each row is a local vector.  This is similar to `data matrix` in the context of
multivariate statistics.  Since each row is represented by a local vector, the number of columns is
limited by the integer range but it should be much smaller in practice.

<div class="codetabs">
<div data-lang="scala" markdown="1">

A [`RowMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix) can be
created from an `RDD[Vector]` instance.  Then we can compute its column summary statistics.

{% highlight scala %}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.linalg.distributed.RowMatrix

val rows: RDD[Vector] = ... // an RDD of local vectors
// Create a RowMatrix from an RDD[Vector].
val mat: RowMatrix = new RowMatrix(rows)

// Get its size.
val m = mat.numRows()
val n = mat.numCols()
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">

A [`RowMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix) can be
created from a `JavaRDD<Vector>` instance.  Then we can compute its column summary statistics.

{% highlight java %}
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.distributed.RowMatrix;

JavaRDD<Vector> rows = ... // a JavaRDD of local vectors
// Create a RowMatrix from an JavaRDD<Vector>.
RowMatrix mat = new RowMatrix(rows.rdd());

// Get its size.
long m = mat.numRows();
long n = mat.numCols();
{% endhighlight %}
</div>
</div>

#### Multivariate summary statistics

We provide column summary statistics for `RowMatrix`. 
If the number of columns is not large, say, smaller than 3000, you can also compute
the covariance matrix as a local matrix, which requires $\mathcal{O}(n^2)$ storage where $n$ is the
number of columns. The total CPU time is $\mathcal{O}(m n^2)$, where $m$ is the number of rows,
which could be faster if the rows are sparse.

<div class="codetabs">
<div data-lang="scala" markdown="1">

`RowMatrix#computeColumnSummaryStatistics` returns an instance of
[`MultivariateStatisticalSummary`](api/mllib/index.html#org.apache.spark.mllib.stat.MultivariateStatisticalSummary),
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.

{% highlight scala %}
import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.mllib.stat.MultivariateStatisticalSummary

val mat: RowMatrix = ... // a RowMatrix

// Compute column summary statistics.
val summary: MultivariateStatisticalSummary = mat.computeColumnSummaryStatistics()
println(summary.mean) // a dense vector containing the mean value for each column
println(summary.variance) // column-wise variance
println(summary.numNonzers) // number of nonzeros in each column

// Compute the covariance matrix.
val Cov: Matrix = mat.computeCovariance()
{% endhighlight %}
</div>
</div>

### IndexedRowMatrix

An `IndexedRowMatrix` is similar to a `RowMatrix` but with meaningful row indices.  It is backed by
an RDD of indexed rows, which each row is represented by its index (long-typed) and a local vector.

<div class="codetabs">
<div data-lang="scala" markdown="1">

An
[`IndexedRowMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix)
can be created from an `RDD[IndexedRow]` instance, where
[`IndexedRow`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRow) is a
wrapper over `(Long, Vector)`.  An `IndexedRowMatrix` can be converted to a `RowMatrix` by dropping
its row indices.

{% highlight scala %}
import org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix, RowMatrix}

val rows: RDD[IndexedRow] = ... // an RDD of indexed rows
// Create an IndexedRowMatrix from an RDD[IndexedRow].
val mat: IndexedRowMatrix = new IndexedRowMatrix(rows)

// Get its size.
val m = mat.numRows()
val n = mat.numCols()

// Drop its row indices.
val rowMat: RowMatrix = mat.toRowMatrix()
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">

An
[`IndexedRowMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix)
can be created from an `JavaRDD<IndexedRow>` instance, where
[`IndexedRow`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRow) is a
wrapper over `(long, Vector)`.  An `IndexedRowMatrix` can be converted to a `RowMatrix` by dropping
its row indices.

{% highlight java %}
import org.apache.spark.mllib.linalg.distributed.IndexedRow;
import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix;
import org.apache.spark.mllib.linalg.distributed.RowMatrix;

JavaRDD[IndexedRow] rows = ... // a JavaRDD of indexed rows
// Create an IndexedRowMatrix from a JavaRDD<IndexedRow>.
IndexedRowMatrix mat = new IndexedRowMatrix(rows.rdd());

// Get its size.
long m = mat.numRows();
long n = mat.numCols();

// Drop its row indices.
RowMatrix rowMat = mat.toRowMatrix();
{% endhighlight %}
</div></div>

### CoordinateMatrix

A `CoordinateMatrix` is a distributed matrix backed by an RDD of its entries.  Each entry is a tuple
of `(i: Long, j: Long, value: Double)`, where `i` is the row index, `j` is the column index, and
`value` is the entry value.  A `CoordinateMatrix` should be used only in the case when both
dimensions of the matrix are huge and the matrix is very sparse.

<div class="codetabs">
<div data-lang="scala" markdown="1">

A
[`CoordinateMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.CoordinateMatrix)
can be created from an `RDD[MatrixEntry]` instance, where
[`MatrixEntry`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.MatrixEntry) is a
wrapper over `(Long, Long, Double)`.  A `CoordinateMatrix` can be converted to a `IndexedRowMatrix`
with sparse rows by calling `toIndexedRowMatrix`.  In this release, we do not provide other
computation for `CoordinateMatrix`.

{% highlight scala %}
import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}

val entries: RDD[MatrixEntry] = ... // an RDD of matrix entries
// Create a CoordinateMatrix from an RDD[MatrixEntry].
val mat: CoordinateMatrix = new CoordinateMatrix(entries)

// Get its size.
val m = mat.numRows()
val n = mat.numCols()

// Convert it to an IndexRowMatrix whose rows are sparse vectors.
val indexedRowMatrix = mat.toIndexedRowMatrix()
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">

A
[`CoordinateMatrix`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.CoordinateMatrix)
can be created from a `JavaRDD<MatrixEntry>` instance, where
[`MatrixEntry`](api/mllib/index.html#org.apache.spark.mllib.linalg.distributed.MatrixEntry) is a
wrapper over `(long, long, double)`.  A `CoordinateMatrix` can be converted to a `IndexedRowMatrix`
with sparse rows by calling `toIndexedRowMatrix`.

{% highlight scala %}
import org.apache.spark.mllib.linalg.distributed.CoordinateMatrix;
import org.apache.spark.mllib.linalg.distributed.MatrixEntry;

JavaRDD<MatrixEntry> entries = ... // a JavaRDD of matrix entries
// Create a CoordinateMatrix from a JavaRDD<MatrixEntry>.
CoordinateMatrix mat = new CoordinateMatrix(entries);

// Get its size.
long m = mat.numRows();
long n = mat.numCols();

// Convert it to an IndexRowMatrix whose rows are sparse vectors.
IndexedRowMatrix indexedRowMatrix = mat.toIndexedRowMatrix();
{% endhighlight %}
</div>
</div>