aboutsummaryrefslogtreecommitdiff
path: root/docs/mllib-naive-bayes.md
blob: f4f6a10c8299eeb12c6a0b0d01266f7cc24e80a8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
layout: global
title: Naive Bayes - MLlib
displayTitle: <a href="mllib-guide.html">MLlib</a> - Naive Bayes
---

[Naive Bayes](http://en.wikipedia.org/wiki/Naive_Bayes_classifier) is a simple
multiclass classification algorithm with the assumption of independence between
every pair of features. Naive Bayes can be trained very efficiently. Within a
single pass to the training data, it computes the conditional probability
distribution of each feature given label, and then it applies Bayes' theorem to
compute the conditional probability distribution of label given an observation
and use it for prediction.

MLlib supports [multinomial naive
Bayes](http://en.wikipedia.org/wiki/Naive_Bayes_classifier#Multinomial_naive_Bayes)
and [Bernoulli naive Bayes](http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html).
These models are typically used for [document classification](http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html).
Within that context, each observation is a document and each
feature represents a term whose value is the frequency of the term (in multinomial naive Bayes) or
a zero or one indicating whether the term was found in the document (in Bernoulli naive Bayes).
Feature values must be nonnegative. The model type is selected with an optional parameter
"multinomial" or "bernoulli" with "multinomial" as the default.
[Additive smoothing](http://en.wikipedia.org/wiki/Lidstone_smoothing) can be used by
setting the parameter $\lambda$ (default to $1.0$). For document classification, the input feature
vectors are usually sparse, and sparse vectors should be supplied as input to take advantage of
sparsity. Since the training data is only used once, it is not necessary to cache it.

## Examples

<div class="codetabs">
<div data-lang="scala" markdown="1">

[NaiveBayes](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayes$) implements
multinomial naive Bayes. It takes an RDD of
[LabeledPoint](api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint) and an optional
smoothing parameter `lambda` as input, an optional model type parameter (default is "multinomial"), and outputs a
[NaiveBayesModel](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayesModel), which
can be used for evaluation and prediction.

Refer to the [`NaiveBayes` Scala docs](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayes) and [`NaiveBayesModel` Scala docs](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayesModel) for details on the API.

{% highlight scala %}
import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint

val data = sc.textFile("data/mllib/sample_naive_bayes_data.txt")
val parsedData = data.map { line =>
  val parts = line.split(',')
  LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
}
// Split data into training (60%) and test (40%).
val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0)
val test = splits(1)

val model = NaiveBayes.train(training, lambda = 1.0, modelType = "multinomial")

val predictionAndLabel = test.map(p => (model.predict(p.features), p.label))
val accuracy = 1.0 * predictionAndLabel.filter(x => x._1 == x._2).count() / test.count()

// Save and load model
model.save(sc, "myModelPath")
val sameModel = NaiveBayesModel.load(sc, "myModelPath")
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">

[NaiveBayes](api/java/org/apache/spark/mllib/classification/NaiveBayes.html) implements
multinomial naive Bayes. It takes a Scala RDD of
[LabeledPoint](api/java/org/apache/spark/mllib/regression/LabeledPoint.html) and an
optionally smoothing parameter `lambda` as input, and output a
[NaiveBayesModel](api/java/org/apache/spark/mllib/classification/NaiveBayesModel.html), which
can be used for evaluation and prediction.

Refer to the [`NaiveBayes` Java docs](api/java/org/apache/spark/mllib/classification/NaiveBayes.html) and [`NaiveBayesModel` Java docs](api/java/org/apache/spark/mllib/classification/NaiveBayesModel.html) for details on the API.

{% highlight java %}
import scala.Tuple2;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.mllib.classification.NaiveBayes;
import org.apache.spark.mllib.classification.NaiveBayesModel;
import org.apache.spark.mllib.regression.LabeledPoint;

JavaRDD<LabeledPoint> training = ... // training set
JavaRDD<LabeledPoint> test = ... // test set

final NaiveBayesModel model = NaiveBayes.train(training.rdd(), 1.0);

JavaPairRDD<Double, Double> predictionAndLabel = 
  test.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
    @Override public Tuple2<Double, Double> call(LabeledPoint p) {
      return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
    }
  });
double accuracy = predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
    @Override public Boolean call(Tuple2<Double, Double> pl) {
      return pl._1().equals(pl._2());
    }
  }).count() / (double) test.count();

// Save and load model
model.save(sc.sc(), "myModelPath");
NaiveBayesModel sameModel = NaiveBayesModel.load(sc.sc(), "myModelPath");
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">

[NaiveBayes](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayes) implements multinomial
naive Bayes. It takes an RDD of
[LabeledPoint](api/python/pyspark.mllib.html#pyspark.mllib.regression.LabeledPoint) and an optionally
smoothing parameter `lambda` as input, and output a
[NaiveBayesModel](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayesModel), which can be
used for evaluation and prediction.

Note that the Python API does not yet support model save/load but will in the future.

Refer to the [`NaiveBayes` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayes) and [`NaiveBayesModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayesModel) for more details on the API.

{% highlight python %}
from pyspark.mllib.classification import NaiveBayes, NaiveBayesModel
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.regression import LabeledPoint

def parseLine(line):
    parts = line.split(',')
    label = float(parts[0])
    features = Vectors.dense([float(x) for x in parts[1].split(' ')])
    return LabeledPoint(label, features)

data = sc.textFile('data/mllib/sample_naive_bayes_data.txt').map(parseLine)

# Split data aproximately into training (60%) and test (40%)
training, test = data.randomSplit([0.6, 0.4], seed = 0)

# Train a naive Bayes model.
model = NaiveBayes.train(training, 1.0)

# Make prediction and test accuracy.
predictionAndLabel = test.map(lambda p : (model.predict(p.features), p.label))
accuracy = 1.0 * predictionAndLabel.filter(lambda (x, v): x == v).count() / test.count()

# Save and load model
model.save(sc, "myModelPath")
sameModel = NaiveBayesModel.load(sc, "myModelPath")
{% endhighlight %}

</div>
</div>