aboutsummaryrefslogtreecommitdiff
path: root/docs/mllib-statistics.md
blob: 652d215fa865373ff733a072f17d3f59a58fe041 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
---
layout: global
title: Basic Statistics - spark.mllib
displayTitle: Basic Statistics - spark.mllib
---

* Table of contents
{:toc}


`\[
\newcommand{\R}{\mathbb{R}}
\newcommand{\E}{\mathbb{E}} 
\newcommand{\x}{\mathbf{x}}
\newcommand{\y}{\mathbf{y}}
\newcommand{\wv}{\mathbf{w}}
\newcommand{\av}{\mathbf{\alpha}}
\newcommand{\bv}{\mathbf{b}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\id}{\mathbf{I}} 
\newcommand{\ind}{\mathbf{1}} 
\newcommand{\0}{\mathbf{0}} 
\newcommand{\unit}{\mathbf{e}} 
\newcommand{\one}{\mathbf{1}} 
\newcommand{\zero}{\mathbf{0}}
\]`

## Summary statistics 

We provide column summary statistics for `RDD[Vector]` through the function `colStats` 
available in `Statistics`.

<div class="codetabs">
<div data-lang="scala" markdown="1">

[`colStats()`](api/scala/index.html#org.apache.spark.mllib.stat.Statistics$) returns an instance of
[`MultivariateStatisticalSummary`](api/scala/index.html#org.apache.spark.mllib.stat.MultivariateStatisticalSummary),
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.

Refer to the [`MultivariateStatisticalSummary` Scala docs](api/scala/index.html#org.apache.spark.mllib.stat.MultivariateStatisticalSummary) for details on the API.

{% highlight scala %}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics}

val observations: RDD[Vector] = ... // an RDD of Vectors

// Compute column summary statistics.
val summary: MultivariateStatisticalSummary = Statistics.colStats(observations)
println(summary.mean) // a dense vector containing the mean value for each column
println(summary.variance) // column-wise variance
println(summary.numNonzeros) // number of nonzeros in each column

{% endhighlight %}
</div>

<div data-lang="java" markdown="1">

[`colStats()`](api/java/org/apache/spark/mllib/stat/Statistics.html) returns an instance of
[`MultivariateStatisticalSummary`](api/java/org/apache/spark/mllib/stat/MultivariateStatisticalSummary.html),
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.

Refer to the [`MultivariateStatisticalSummary` Java docs](api/java/org/apache/spark/mllib/stat/MultivariateStatisticalSummary.html) for details on the API.

{% highlight java %}
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.stat.MultivariateStatisticalSummary;
import org.apache.spark.mllib.stat.Statistics;

JavaSparkContext jsc = ...

JavaRDD<Vector> mat = ... // an RDD of Vectors

// Compute column summary statistics.
MultivariateStatisticalSummary summary = Statistics.colStats(mat.rdd());
System.out.println(summary.mean()); // a dense vector containing the mean value for each column
System.out.println(summary.variance()); // column-wise variance
System.out.println(summary.numNonzeros()); // number of nonzeros in each column

{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
[`colStats()`](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics.colStats) returns an instance of
[`MultivariateStatisticalSummary`](api/python/pyspark.mllib.html#pyspark.mllib.stat.MultivariateStatisticalSummary),
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.

Refer to the [`MultivariateStatisticalSummary` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.MultivariateStatisticalSummary) for more details on the API.

{% highlight python %}
from pyspark.mllib.stat import Statistics

sc = ... # SparkContext

mat = ... # an RDD of Vectors

# Compute column summary statistics.
summary = Statistics.colStats(mat)
print(summary.mean())
print(summary.variance())
print(summary.numNonzeros())

{% endhighlight %}
</div>

</div>

## Correlations

Calculating the correlation between two series of data is a common operation in Statistics. In `spark.mllib`
we provide the flexibility to calculate pairwise correlations among many series. The supported 
correlation methods are currently Pearson's and Spearman's correlation.
 
<div class="codetabs">
<div data-lang="scala" markdown="1">
[`Statistics`](api/scala/index.html#org.apache.spark.mllib.stat.Statistics$) provides methods to 
calculate correlations between series. Depending on the type of input, two `RDD[Double]`s or 
an `RDD[Vector]`, the output will be a `Double` or the correlation `Matrix` respectively.

Refer to the [`Statistics` Scala docs](api/scala/index.html#org.apache.spark.mllib.stat.Statistics) for details on the API.

{% highlight scala %}
import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.stat.Statistics

val sc: SparkContext = ...

val seriesX: RDD[Double] = ... // a series
val seriesY: RDD[Double] = ... // must have the same number of partitions and cardinality as seriesX

// compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a 
// method is not specified, Pearson's method will be used by default. 
val correlation: Double = Statistics.corr(seriesX, seriesY, "pearson")

val data: RDD[Vector] = ... // note that each Vector is a row and not a column

// calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.
// If a method is not specified, Pearson's method will be used by default. 
val correlMatrix: Matrix = Statistics.corr(data, "pearson")

{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
[`Statistics`](api/java/org/apache/spark/mllib/stat/Statistics.html) provides methods to 
calculate correlations between series. Depending on the type of input, two `JavaDoubleRDD`s or 
a `JavaRDD<Vector>`, the output will be a `Double` or the correlation `Matrix` respectively.

Refer to the [`Statistics` Java docs](api/java/org/apache/spark/mllib/stat/Statistics.html) for details on the API.

{% highlight java %}
import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.*;
import org.apache.spark.mllib.stat.Statistics;

JavaSparkContext jsc = ...

JavaDoubleRDD seriesX = ... // a series
JavaDoubleRDD seriesY = ... // must have the same number of partitions and cardinality as seriesX

// compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a 
// method is not specified, Pearson's method will be used by default. 
Double correlation = Statistics.corr(seriesX.srdd(), seriesY.srdd(), "pearson");

JavaRDD<Vector> data = ... // note that each Vector is a row and not a column

// calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.
// If a method is not specified, Pearson's method will be used by default. 
Matrix correlMatrix = Statistics.corr(data.rdd(), "pearson");

{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
[`Statistics`](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) provides methods to 
calculate correlations between series. Depending on the type of input, two `RDD[Double]`s or 
an `RDD[Vector]`, the output will be a `Double` or the correlation `Matrix` respectively.

Refer to the [`Statistics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) for more details on the API.

{% highlight python %}
from pyspark.mllib.stat import Statistics

sc = ... # SparkContext

seriesX = ... # a series
seriesY = ... # must have the same number of partitions and cardinality as seriesX

# Compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a 
# method is not specified, Pearson's method will be used by default. 
print(Statistics.corr(seriesX, seriesY, method="pearson"))

data = ... # an RDD of Vectors
# calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.
# If a method is not specified, Pearson's method will be used by default. 
print(Statistics.corr(data, method="pearson"))

{% endhighlight %}
</div>

</div>

## Stratified sampling

Unlike the other statistics functions, which reside in `spark.mllib`, stratified sampling methods,
`sampleByKey` and `sampleByKeyExact`, can be performed on RDD's of key-value pairs. For stratified
sampling, the keys can be thought of as a label and the value as a specific attribute. For example 
the key can be man or woman, or document ids, and the respective values can be the list of ages 
of the people in the population or the list of words in the documents. The `sampleByKey` method 
will flip a coin to decide whether an observation will be sampled or not, therefore requires one 
pass over the data, and provides an *expected* sample size. `sampleByKeyExact` requires significant 
more resources than the per-stratum simple random sampling used in `sampleByKey`, but will provide
the exact sampling size with 99.99% confidence. `sampleByKeyExact` is currently not supported in 
python.

<div class="codetabs">
<div data-lang="scala" markdown="1">
[`sampleByKeyExact()`](api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions) allows users to
sample exactly $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the desired 
fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the set of
keys. Sampling without replacement requires one additional pass over the RDD to guarantee sample 
size, whereas sampling with replacement requires two additional passes.

{% highlight scala %}
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.PairRDDFunctions

val sc: SparkContext = ...

val data = ... // an RDD[(K, V)] of any key value pairs
val fractions: Map[K, Double] = ... // specify the exact fraction desired from each key

// Get an exact sample from each stratum
val approxSample = data.sampleByKey(withReplacement = false, fractions)
val exactSample = data.sampleByKeyExact(withReplacement = false, fractions)

{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
[`sampleByKeyExact()`](api/java/org/apache/spark/api/java/JavaPairRDD.html) allows users to
sample exactly $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the desired 
fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the set of
keys. Sampling without replacement requires one additional pass over the RDD to guarantee sample 
size, whereas sampling with replacement requires two additional passes.

{% highlight java %}
import java.util.Map;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;

JavaSparkContext jsc = ...

JavaPairRDD<K, V> data = ... // an RDD of any key value pairs
Map<K, Object> fractions = ... // specify the exact fraction desired from each key

// Get an exact sample from each stratum
JavaPairRDD<K, V> approxSample = data.sampleByKey(false, fractions);
JavaPairRDD<K, V> exactSample = data.sampleByKeyExact(false, fractions);

{% endhighlight %}
</div>
<div data-lang="python" markdown="1">
[`sampleByKey()`](api/python/pyspark.html#pyspark.RDD.sampleByKey) allows users to
sample approximately $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the 
desired fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the 
set of keys.

*Note:* `sampleByKeyExact()` is currently not supported in Python.

{% highlight python %}

sc = ... # SparkContext

data = ... # an RDD of any key value pairs
fractions = ... # specify the exact fraction desired from each key as a dictionary

approxSample = data.sampleByKey(False, fractions);

{% endhighlight %}
</div>

</div>

## Hypothesis testing

Hypothesis testing is a powerful tool in statistics to determine whether a result is statistically 
significant, whether this result occurred by chance or not. `spark.mllib` currently supports Pearson's 
chi-squared ( $\chi^2$) tests for goodness of fit and independence. The input data types determine
whether the goodness of fit or the independence test is conducted. The goodness of fit test requires 
an input type of `Vector`, whereas the independence test requires a `Matrix` as input.

`spark.mllib` also supports the input type `RDD[LabeledPoint]` to enable feature selection via chi-squared 
independence tests.

<div class="codetabs">
<div data-lang="scala" markdown="1">
[`Statistics`](api/scala/index.html#org.apache.spark.mllib.stat.Statistics$) provides methods to 
run Pearson's chi-squared tests. The following example demonstrates how to run and interpret 
hypothesis tests.

{% highlight scala %}
import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.stat.Statistics._

val sc: SparkContext = ...

val vec: Vector = ... // a vector composed of the frequencies of events

// compute the goodness of fit. If a second vector to test against is not supplied as a parameter, 
// the test runs against a uniform distribution.  
val goodnessOfFitTestResult = Statistics.chiSqTest(vec)
println(goodnessOfFitTestResult) // summary of the test including the p-value, degrees of freedom, 
                                 // test statistic, the method used, and the null hypothesis.

val mat: Matrix = ... // a contingency matrix

// conduct Pearson's independence test on the input contingency matrix
val independenceTestResult = Statistics.chiSqTest(mat) 
println(independenceTestResult) // summary of the test including the p-value, degrees of freedom...

val obs: RDD[LabeledPoint] = ... // (feature, label) pairs.

// The contingency table is constructed from the raw (feature, label) pairs and used to conduct
// the independence test. Returns an array containing the ChiSquaredTestResult for every feature 
// against the label.
val featureTestResults: Array[ChiSqTestResult] = Statistics.chiSqTest(obs)
var i = 1
featureTestResults.foreach { result =>
    println(s"Column $i:\n$result")
    i += 1
} // summary of the test 

{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
[`Statistics`](api/java/org/apache/spark/mllib/stat/Statistics.html) provides methods to 
run Pearson's chi-squared tests. The following example demonstrates how to run and interpret 
hypothesis tests.

Refer to the [`ChiSqTestResult` Java docs](api/java/org/apache/spark/mllib/stat/test/ChiSqTestResult.html) for details on the API.

{% highlight java %}
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.*;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.stat.Statistics;
import org.apache.spark.mllib.stat.test.ChiSqTestResult;

JavaSparkContext jsc = ...

Vector vec = ... // a vector composed of the frequencies of events

// compute the goodness of fit. If a second vector to test against is not supplied as a parameter, 
// the test runs against a uniform distribution.  
ChiSqTestResult goodnessOfFitTestResult = Statistics.chiSqTest(vec);
// summary of the test including the p-value, degrees of freedom, test statistic, the method used, 
// and the null hypothesis.
System.out.println(goodnessOfFitTestResult);

Matrix mat = ... // a contingency matrix

// conduct Pearson's independence test on the input contingency matrix
ChiSqTestResult independenceTestResult = Statistics.chiSqTest(mat);
// summary of the test including the p-value, degrees of freedom...
System.out.println(independenceTestResult);

JavaRDD<LabeledPoint> obs = ... // an RDD of labeled points

// The contingency table is constructed from the raw (feature, label) pairs and used to conduct
// the independence test. Returns an array containing the ChiSquaredTestResult for every feature 
// against the label.
ChiSqTestResult[] featureTestResults = Statistics.chiSqTest(obs.rdd());
int i = 1;
for (ChiSqTestResult result : featureTestResults) {
    System.out.println("Column " + i + ":");
    System.out.println(result); // summary of the test
    i++;
}

{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
[`Statistics`](api/python/index.html#pyspark.mllib.stat.Statistics$) provides methods to
run Pearson's chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.

Refer to the [`Statistics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) for more details on the API.

{% highlight python %}
from pyspark import SparkContext
from pyspark.mllib.linalg import Vectors, Matrices
from pyspark.mllib.regresssion import LabeledPoint
from pyspark.mllib.stat import Statistics

sc = SparkContext()

vec = Vectors.dense(...) # a vector composed of the frequencies of events

# compute the goodness of fit. If a second vector to test against is not supplied as a parameter,
# the test runs against a uniform distribution.
goodnessOfFitTestResult = Statistics.chiSqTest(vec)
print(goodnessOfFitTestResult) # summary of the test including the p-value, degrees of freedom,
                               # test statistic, the method used, and the null hypothesis.

mat = Matrices.dense(...) # a contingency matrix

# conduct Pearson's independence test on the input contingency matrix
independenceTestResult = Statistics.chiSqTest(mat)
print(independenceTestResult)  # summary of the test including the p-value, degrees of freedom...

obs = sc.parallelize(...)  # LabeledPoint(feature, label) .

# The contingency table is constructed from an RDD of LabeledPoint and used to conduct
# the independence test. Returns an array containing the ChiSquaredTestResult for every feature
# against the label.
featureTestResults = Statistics.chiSqTest(obs)

for i, result in enumerate(featureTestResults):
    print("Column $d:" % (i + 1))
    print(result)
{% endhighlight %}
</div>

</div>

Additionally, `spark.mllib` provides a 1-sample, 2-sided implementation of the Kolmogorov-Smirnov (KS) test
for equality of probability distributions. By providing the name of a theoretical distribution
(currently solely supported for the normal distribution) and its parameters, or a function to 
calculate the cumulative distribution according to a given theoretical distribution, the user can
test the null hypothesis that their sample is drawn from that distribution. In the case that the
user tests against the normal distribution (`distName="norm"`), but does not provide distribution
parameters, the test initializes to the standard normal distribution and logs an appropriate 
message.

<div class="codetabs">
<div data-lang="scala" markdown="1">
[`Statistics`](api/scala/index.html#org.apache.spark.mllib.stat.Statistics$) provides methods to
run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run
and interpret the hypothesis tests.

Refer to the [`Statistics` Scala docs](api/scala/index.html#org.apache.spark.mllib.stat.Statistics) for details on the API.

{% highlight scala %}
import org.apache.spark.mllib.stat.Statistics

val data: RDD[Double] = ... // an RDD of sample data

// run a KS test for the sample versus a standard normal distribution
val testResult = Statistics.kolmogorovSmirnovTest(data, "norm", 0, 1)
println(testResult) // summary of the test including the p-value, test statistic,
                    // and null hypothesis
                    // if our p-value indicates significance, we can reject the null hypothesis

// perform a KS test using a cumulative distribution function of our making
val myCDF: Double => Double = ...
val testResult2 = Statistics.kolmogorovSmirnovTest(data, myCDF)
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
[`Statistics`](api/java/org/apache/spark/mllib/stat/Statistics.html) provides methods to
run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run
and interpret the hypothesis tests.

Refer to the [`Statistics` Java docs](api/java/org/apache/spark/mllib/stat/Statistics.html) for details on the API.

{% highlight java %}
import java.util.Arrays;

import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.mllib.stat.Statistics;
import org.apache.spark.mllib.stat.test.KolmogorovSmirnovTestResult;

JavaSparkContext jsc = ...
JavaDoubleRDD data = jsc.parallelizeDoubles(Arrays.asList(0.2, 1.0, ...));
KolmogorovSmirnovTestResult testResult = Statistics.kolmogorovSmirnovTest(data, "norm", 0.0, 1.0);
// summary of the test including the p-value, test statistic,
// and null hypothesis
// if our p-value indicates significance, we can reject the null hypothesis
System.out.println(testResult);
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
[`Statistics`](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) provides methods to
run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run
and interpret the hypothesis tests.

Refer to the [`Statistics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) for more details on the API.

{% highlight python %}
from pyspark.mllib.stat import Statistics

parallelData = sc.parallelize([1.0, 2.0, ... ])

# run a KS test for the sample versus a standard normal distribution
testResult = Statistics.kolmogorovSmirnovTest(parallelData, "norm", 0, 1)
print(testResult) # summary of the test including the p-value, test statistic,
                  # and null hypothesis
                  # if our p-value indicates significance, we can reject the null hypothesis
# Note that the Scala functionality of calling Statistics.kolmogorovSmirnovTest with
# a lambda to calculate the CDF is not made available in the Python API
{% endhighlight %}
</div>
</div>

### Streaming Significance Testing
`spark.mllib` provides online implementations of some tests to support use cases
like A/B testing. These tests may be performed on a Spark Streaming
`DStream[(Boolean,Double)]` where the first element of each tuple
indicates control group (`false`) or treatment group (`true`) and the
second element is the value of an observation.

Streaming significance testing supports the following parameters:

* `peacePeriod` - The number of initial data points from the stream to
ignore, used to mitigate novelty effects.
* `windowSize` - The number of past batches to perform hypothesis
testing over. Setting to `0` will perform cumulative processing using
all prior batches.


<div class="codetabs">
<div data-lang="scala" markdown="1">
[`StreamingTest`](api/scala/index.html#org.apache.spark.mllib.stat.test.StreamingTest)
provides streaming hypothesis testing.

{% include_example scala/org/apache/spark/examples/mllib/StreamingTestExample.scala %}
</div>
</div>


## Random data generation

Random data generation is useful for randomized algorithms, prototyping, and performance testing.
`spark.mllib` supports generating random RDDs with i.i.d. values drawn from a given distribution:
uniform, standard normal, or Poisson.

<div class="codetabs">
<div data-lang="scala" markdown="1">
[`RandomRDDs`](api/scala/index.html#org.apache.spark.mllib.random.RandomRDDs) provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution `N(0, 1)`, and then map it to `N(1, 4)`.

Refer to the [`RandomRDDs` Scala docs](api/scala/index.html#org.apache.spark.mllib.random.RandomRDDs) for details on the API.

{% highlight scala %}
import org.apache.spark.SparkContext
import org.apache.spark.mllib.random.RandomRDDs._

val sc: SparkContext = ...

// Generate a random double RDD that contains 1 million i.i.d. values drawn from the
// standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.
val u = normalRDD(sc, 1000000L, 10)
// Apply a transform to get a random double RDD following `N(1, 4)`.
val v = u.map(x => 1.0 + 2.0 * x)
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
[`RandomRDDs`](api/java/index.html#org.apache.spark.mllib.random.RandomRDDs) provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution `N(0, 1)`, and then map it to `N(1, 4)`.

Refer to the [`RandomRDDs` Java docs](api/java/org/apache/spark/mllib/random/RandomRDDs) for details on the API.

{% highlight java %}
import org.apache.spark.SparkContext;
import org.apache.spark.api.JavaDoubleRDD;
import static org.apache.spark.mllib.random.RandomRDDs.*;

JavaSparkContext jsc = ...

// Generate a random double RDD that contains 1 million i.i.d. values drawn from the
// standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.
JavaDoubleRDD u = normalJavaRDD(jsc, 1000000L, 10);
// Apply a transform to get a random double RDD following `N(1, 4)`.
JavaDoubleRDD v = u.map(
  new Function<Double, Double>() {
    public Double call(Double x) {
      return 1.0 + 2.0 * x;
    }
  });
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
[`RandomRDDs`](api/python/pyspark.mllib.html#pyspark.mllib.random.RandomRDDs) provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution `N(0, 1)`, and then map it to `N(1, 4)`.

Refer to the [`RandomRDDs` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.random.RandomRDDs) for more details on the API.

{% highlight python %}
from pyspark.mllib.random import RandomRDDs

sc = ... # SparkContext

# Generate a random double RDD that contains 1 million i.i.d. values drawn from the
# standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.
u = RandomRDDs.normalRDD(sc, 1000000L, 10)
# Apply a transform to get a random double RDD following `N(1, 4)`.
v = u.map(lambda x: 1.0 + 2.0 * x)
{% endhighlight %}
</div>
</div>

## Kernel density estimation

[Kernel density estimation](https://en.wikipedia.org/wiki/Kernel_density_estimation) is a technique
useful for visualizing empirical probability distributions without requiring assumptions about the
particular distribution that the observed samples are drawn from. It computes an estimate of the
probability density function of a random variables, evaluated at a given set of points. It achieves
this estimate by expressing the PDF of the empirical distribution at a particular point as the the
mean of PDFs of normal distributions centered around each of the samples.

<div class="codetabs">

<div data-lang="scala" markdown="1">
[`KernelDensity`](api/scala/index.html#org.apache.spark.mllib.stat.KernelDensity) provides methods
to compute kernel density estimates from an RDD of samples. The following example demonstrates how
to do so.

Refer to the [`KernelDensity` Scala docs](api/scala/index.html#org.apache.spark.mllib.stat.KernelDensity) for details on the API.

{% highlight scala %}
import org.apache.spark.mllib.stat.KernelDensity
import org.apache.spark.rdd.RDD

val data: RDD[Double] = ... // an RDD of sample data

// Construct the density estimator with the sample data and a standard deviation for the Gaussian
// kernels
val kd = new KernelDensity()
  .setSample(data)
  .setBandwidth(3.0)

// Find density estimates for the given values
val densities = kd.estimate(Array(-1.0, 2.0, 5.0))
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
[`KernelDensity`](api/java/index.html#org.apache.spark.mllib.stat.KernelDensity) provides methods
to compute kernel density estimates from an RDD of samples. The following example demonstrates how
to do so.

Refer to the [`KernelDensity` Java docs](api/java/org/apache/spark/mllib/stat/KernelDensity.html) for details on the API.

{% highlight java %}
import org.apache.spark.mllib.stat.KernelDensity;
import org.apache.spark.rdd.RDD;

RDD<Double> data = ... // an RDD of sample data

// Construct the density estimator with the sample data and a standard deviation for the Gaussian
// kernels
KernelDensity kd = new KernelDensity()
  .setSample(data)
  .setBandwidth(3.0);

// Find density estimates for the given values
double[] densities = kd.estimate(new double[] {-1.0, 2.0, 5.0});
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
[`KernelDensity`](api/python/pyspark.mllib.html#pyspark.mllib.stat.KernelDensity) provides methods
to compute kernel density estimates from an RDD of samples. The following example demonstrates how
to do so.

Refer to the [`KernelDensity` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.KernelDensity) for more details on the API.

{% highlight python %}
from pyspark.mllib.stat import KernelDensity

data = ... # an RDD of sample data

# Construct the density estimator with the sample data and a standard deviation for the Gaussian
# kernels
kd = KernelDensity()
kd.setSample(data)
kd.setBandwidth(3.0)

# Find density estimates for the given values
densities = kd.estimate([-1.0, 2.0, 5.0])
{% endhighlight %}
</div>

</div>