aboutsummaryrefslogtreecommitdiff
path: root/docs/sparkr.md
blob: 4385a4eeacd5ca31194a595455a8199d41418465 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
layout: global
displayTitle: SparkR (R on Spark)
title: SparkR (R on Spark)
---

* This will become a table of contents (this text will be scraped).
{:toc}

# Overview
SparkR is an R package that provides a light-weight frontend to use Apache Spark from R.
In Spark {{site.SPARK_VERSION}}, SparkR provides a distributed data frame implementation that
supports operations like selection, filtering, aggregation etc. (similar to R data frames,
[dplyr](https://github.com/hadley/dplyr)) but on large datasets.

# SparkR DataFrames

A DataFrame is a distributed collection of data organized into named columns. It is conceptually
equivalent to a table in a relational database or a data frame in R, but with richer
optimizations under the hood. DataFrames can be constructed from a wide array of sources such as:
structured data files, tables in Hive, external databases, or existing local R data frames.

All of the examples on this page use sample data included in R or the Spark distribution and can be run using the `./bin/sparkR` shell.

## Starting Up: SparkContext, SQLContext

<div data-lang="r"  markdown="1">
The entry point into SparkR is the `SparkContext` which connects your R program to a Spark cluster.
You can create a `SparkContext` using `sparkR.init` and pass in options such as the application name
, any spark packages depended on, etc. Further, to work with DataFrames we will need a `SQLContext`,
which can be created from the  SparkContext. If you are working from the SparkR shell, the
`SQLContext` and `SparkContext` should already be created for you.

{% highlight r %}
sc <- sparkR.init()
sqlContext <- sparkRSQL.init(sc)
{% endhighlight %}

</div>

## Creating DataFrames
With a `SQLContext`, applications can create `DataFrame`s from a local R data frame, from a [Hive table](sql-programming-guide.html#hive-tables), or from other [data sources](sql-programming-guide.html#data-sources).

### From local data frames
The simplest way to create a data frame is to convert a local R data frame into a SparkR DataFrame. Specifically we can use `createDataFrame` and pass in the local R data frame to create a SparkR DataFrame. As an example, the following creates a `DataFrame` based using the `faithful` dataset from R. 

<div data-lang="r"  markdown="1">
{% highlight r %}
df <- createDataFrame(sqlContext, faithful) 

# Displays the content of the DataFrame to stdout
head(df)
##  eruptions waiting
##1     3.600      79
##2     1.800      54
##3     3.333      74

{% endhighlight %}
</div>

### From Data Sources

SparkR supports operating on a variety of data sources through the `DataFrame` interface. This section describes the general methods for loading and saving data using Data Sources. You can check the Spark SQL programming guide for more [specific options](sql-programming-guide.html#manually-specifying-options) that are available for the built-in data sources.

The general method for creating DataFrames from data sources is `read.df`. This method takes in the `SQLContext`, the path for the file to load and the type of data source. SparkR supports reading JSON and Parquet files natively and through [Spark Packages](http://spark-packages.org/) you can find data source connectors for popular file formats like [CSV](http://spark-packages.org/package/databricks/spark-csv) and [Avro](http://spark-packages.org/package/databricks/spark-avro). These packages can either be added by
specifying `--packages` with `spark-submit` or `sparkR` commands, or if creating context through `init`
you can specify the packages with the `packages` argument.

<div data-lang="r" markdown="1">
{% highlight r %}
sc <- sparkR.init(sparkPackages="com.databricks:spark-csv_2.11:1.0.3")
sqlContext <- sparkRSQL.init(sc)
{% endhighlight %}
</div>

We can see how to use data sources using an example JSON input file. Note that the file that is used here is _not_ a typical JSON file. Each line in the file must contain a separate, self-contained valid JSON object. As a consequence, a regular multi-line JSON file will most often fail.

<div data-lang="r"  markdown="1">

{% highlight r %}
people <- read.df(sqlContext, "./examples/src/main/resources/people.json", "json")
head(people)
##  age    name
##1  NA Michael
##2  30    Andy
##3  19  Justin

# SparkR automatically infers the schema from the JSON file
printSchema(people)
# root
#  |-- age: integer (nullable = true)
#  |-- name: string (nullable = true)

{% endhighlight %}
</div>

The data sources API can also be used to save out DataFrames into multiple file formats. For example we can save the DataFrame from the previous example
to a Parquet file using `write.df` 

<div data-lang="r"  markdown="1">
{% highlight r %}
write.df(people, path="people.parquet", source="parquet", mode="overwrite")
{% endhighlight %}
</div>

### From Hive tables

You can also create SparkR DataFrames from Hive tables. To do this we will need to create a HiveContext which can access tables in the Hive MetaStore. Note that Spark should have been built with [Hive support](building-spark.html#building-with-hive-and-jdbc-support) and more details on the difference between SQLContext and HiveContext can be found in the [SQL programming guide](sql-programming-guide.html#starting-point-sqlcontext).

<div data-lang="r" markdown="1">
{% highlight r %}
# sc is an existing SparkContext.
hiveContext <- sparkRHive.init(sc)

sql(hiveContext, "CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
sql(hiveContext, "LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")

# Queries can be expressed in HiveQL.
results <- sql(hiveContext, "FROM src SELECT key, value")

# results is now a DataFrame
head(results)
##  key   value
## 1 238 val_238
## 2  86  val_86
## 3 311 val_311

{% endhighlight %}
</div>

## DataFrame Operations

SparkR DataFrames support a number of functions to do structured data processing.
Here we include some basic examples and a complete list can be found in the [API](api/R/index.html) docs:

### Selecting rows, columns

<div data-lang="r"  markdown="1">
{% highlight r %}
# Create the DataFrame
df <- createDataFrame(sqlContext, faithful) 

# Get basic information about the DataFrame
df
## DataFrame[eruptions:double, waiting:double]

# Select only the "eruptions" column
head(select(df, df$eruptions))
##  eruptions
##1     3.600
##2     1.800
##3     3.333

# You can also pass in column name as strings 
head(select(df, "eruptions"))

# Filter the DataFrame to only retain rows with wait times shorter than 50 mins
head(filter(df, df$waiting < 50))
##  eruptions waiting
##1     1.750      47
##2     1.750      47
##3     1.867      48

{% endhighlight %}

</div>

### Grouping, Aggregation 

SparkR data frames support a number of commonly used functions to aggregate data after grouping. For example we can compute a histogram of the `waiting` time in the `faithful` dataset as shown below

<div data-lang="r"  markdown="1">
{% highlight r %}

# We use the `n` operator to count the number of times each waiting time appears
head(summarize(groupBy(df, df$waiting), count = n(df$waiting)))
##  waiting count
##1      81    13
##2      60     6
##3      68     1

# We can also sort the output from the aggregation to get the most common waiting times
waiting_counts <- summarize(groupBy(df, df$waiting), count = n(df$waiting))
head(arrange(waiting_counts, desc(waiting_counts$count)))

##   waiting count
##1      78    15
##2      83    14
##3      81    13

{% endhighlight %}
</div>

### Operating on Columns

SparkR also provides a number of functions that can directly applied to columns for data processing and during aggregation. The example below shows the use of basic arithmetic functions. 

<div data-lang="r"  markdown="1">
{% highlight r %}

# Convert waiting time from hours to seconds.
# Note that we can assign this to a new column in the same DataFrame
df$waiting_secs <- df$waiting * 60
head(df)
##  eruptions waiting waiting_secs
##1     3.600      79         4740
##2     1.800      54         3240
##3     3.333      74         4440

{% endhighlight %}
</div>

## Running SQL Queries from SparkR
A SparkR DataFrame can also be registered as a temporary table in Spark SQL and registering a DataFrame as a table allows you to run SQL queries over its data.
The `sql` function enables applications to run SQL queries programmatically and returns the result as a `DataFrame`.

<div data-lang="r"  markdown="1">
{% highlight r %}
# Load a JSON file
people <- read.df(sqlContext, "./examples/src/main/resources/people.json", "json")

# Register this DataFrame as a table.
registerTempTable(people, "people")

# SQL statements can be run by using the sql method
teenagers <- sql(sqlContext, "SELECT name FROM people WHERE age >= 13 AND age <= 19")
head(teenagers)
##    name
##1 Justin

{% endhighlight %}
</div>