aboutsummaryrefslogtreecommitdiff
path: root/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala
blob: 98080bb71ac83e24df237e44b5648ef8ba5d9715 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.linalg

import java.util.{Arrays, Random}

import scala.collection.mutable.{ArrayBuffer, ArrayBuilder => MArrayBuilder, HashSet => MHashSet}

import breeze.linalg.{CSCMatrix => BSM, DenseMatrix => BDM, Matrix => BM}
import com.github.fommil.netlib.BLAS.{getInstance => blas}

import org.apache.spark.annotation.Since

/**
 * Trait for a local matrix.
 */
@Since("2.0.0")
sealed trait Matrix extends Serializable {

  /** Number of rows. */
  @Since("2.0.0")
  def numRows: Int

  /** Number of columns. */
  @Since("2.0.0")
  def numCols: Int

  /** Flag that keeps track whether the matrix is transposed or not. False by default. */
  @Since("2.0.0")
  val isTransposed: Boolean = false

  /** Converts to a dense array in column major. */
  @Since("2.0.0")
  def toArray: Array[Double] = {
    val newArray = new Array[Double](numRows * numCols)
    foreachActive { (i, j, v) =>
      newArray(j * numRows + i) = v
    }
    newArray
  }

  /**
   * Returns an iterator of column vectors.
   * This operation could be expensive, depending on the underlying storage.
   */
  @Since("2.0.0")
  def colIter: Iterator[Vector]

  /**
   * Returns an iterator of row vectors.
   * This operation could be expensive, depending on the underlying storage.
   */
  @Since("2.0.0")
  def rowIter: Iterator[Vector] = this.transpose.colIter

  /** Converts to a breeze matrix. */
  private[ml] def asBreeze: BM[Double]

  /** Gets the (i, j)-th element. */
  @Since("2.0.0")
  def apply(i: Int, j: Int): Double

  /** Return the index for the (i, j)-th element in the backing array. */
  private[ml] def index(i: Int, j: Int): Int

  /** Update element at (i, j) */
  private[ml] def update(i: Int, j: Int, v: Double): Unit

  /** Get a deep copy of the matrix. */
  @Since("2.0.0")
  def copy: Matrix

  /** Transpose the Matrix. Returns a new `Matrix` instance sharing the same underlying data. */
  @Since("2.0.0")
  def transpose: Matrix

  /** Convenience method for `Matrix`-`DenseMatrix` multiplication. */
  @Since("2.0.0")
  def multiply(y: DenseMatrix): DenseMatrix = {
    val C: DenseMatrix = DenseMatrix.zeros(numRows, y.numCols)
    BLAS.gemm(1.0, this, y, 0.0, C)
    C
  }

  /** Convenience method for `Matrix`-`DenseVector` multiplication. For binary compatibility. */
  @Since("2.0.0")
  def multiply(y: DenseVector): DenseVector = {
    multiply(y.asInstanceOf[Vector])
  }

  /** Convenience method for `Matrix`-`Vector` multiplication. */
  @Since("2.0.0")
  def multiply(y: Vector): DenseVector = {
    val output = new DenseVector(new Array[Double](numRows))
    BLAS.gemv(1.0, this, y, 0.0, output)
    output
  }

  /** A human readable representation of the matrix */
  override def toString: String = asBreeze.toString()

  /** A human readable representation of the matrix with maximum lines and width */
  @Since("2.0.0")
  def toString(maxLines: Int, maxLineWidth: Int): String = asBreeze.toString(maxLines, maxLineWidth)

  /**
   * Map the values of this matrix using a function. Generates a new matrix. Performs the
   * function on only the backing array. For example, an operation such as addition or
   * subtraction will only be performed on the non-zero values in a `SparseMatrix`.
   */
  private[spark] def map(f: Double => Double): Matrix

  /**
   * Update all the values of this matrix using the function f. Performed in-place on the
   * backing array. For example, an operation such as addition or subtraction will only be
   * performed on the non-zero values in a `SparseMatrix`.
   */
  private[ml] def update(f: Double => Double): Matrix

  /**
   * Applies a function `f` to all the active elements of dense and sparse matrix. The ordering
   * of the elements are not defined.
   *
   * @param f the function takes three parameters where the first two parameters are the row
   *          and column indices respectively with the type `Int`, and the final parameter is the
   *          corresponding value in the matrix with type `Double`.
   */
  private[spark] def foreachActive(f: (Int, Int, Double) => Unit)

  /**
   * Find the number of non-zero active values.
   */
  @Since("2.0.0")
  def numNonzeros: Int

  /**
   * Find the number of values stored explicitly. These values can be zero as well.
   */
  @Since("2.0.0")
  def numActives: Int
}

/**
 * Column-major dense matrix.
 * The entry values are stored in a single array of doubles with columns listed in sequence.
 * For example, the following matrix
 * {{{
 *   1.0 2.0
 *   3.0 4.0
 *   5.0 6.0
 * }}}
 * is stored as `[1.0, 3.0, 5.0, 2.0, 4.0, 6.0]`.
 *
 * @param numRows number of rows
 * @param numCols number of columns
 * @param values matrix entries in column major if not transposed or in row major otherwise
 * @param isTransposed whether the matrix is transposed. If true, `values` stores the matrix in
 *                     row major.
 */
@Since("2.0.0")
class DenseMatrix @Since("2.0.0") (
    @Since("2.0.0") val numRows: Int,
    @Since("2.0.0") val numCols: Int,
    @Since("2.0.0") val values: Array[Double],
    override val isTransposed: Boolean) extends Matrix {

  require(values.length == numRows * numCols, "The number of values supplied doesn't match the " +
    s"size of the matrix! values.length: ${values.length}, numRows * numCols: ${numRows * numCols}")

  /**
   * Column-major dense matrix.
   * The entry values are stored in a single array of doubles with columns listed in sequence.
   * For example, the following matrix
   * {{{
   *   1.0 2.0
   *   3.0 4.0
   *   5.0 6.0
   * }}}
   * is stored as `[1.0, 3.0, 5.0, 2.0, 4.0, 6.0]`.
   *
   * @param numRows number of rows
   * @param numCols number of columns
   * @param values matrix entries in column major
   */
  @Since("2.0.0")
  def this(numRows: Int, numCols: Int, values: Array[Double]) =
    this(numRows, numCols, values, false)

  override def equals(o: Any): Boolean = o match {
    case m: Matrix => asBreeze == m.asBreeze
    case _ => false
  }

  override def hashCode: Int = {
    Seq(numRows, numCols, toArray).##
  }

  private[ml] def asBreeze: BM[Double] = {
    if (!isTransposed) {
      new BDM[Double](numRows, numCols, values)
    } else {
      val breezeMatrix = new BDM[Double](numCols, numRows, values)
      breezeMatrix.t
    }
  }

  private[ml] def apply(i: Int): Double = values(i)

  override def apply(i: Int, j: Int): Double = values(index(i, j))

  private[ml] def index(i: Int, j: Int): Int = {
    require(i >= 0 && i < numRows, s"Expected 0 <= i < $numRows, got i = $i.")
    require(j >= 0 && j < numCols, s"Expected 0 <= j < $numCols, got j = $j.")
    if (!isTransposed) i + numRows * j else j + numCols * i
  }

  private[ml] def update(i: Int, j: Int, v: Double): Unit = {
    values(index(i, j)) = v
  }

  override def copy: DenseMatrix = new DenseMatrix(numRows, numCols, values.clone())

  private[spark] def map(f: Double => Double) = new DenseMatrix(numRows, numCols, values.map(f),
    isTransposed)

  private[ml] def update(f: Double => Double): DenseMatrix = {
    val len = values.length
    var i = 0
    while (i < len) {
      values(i) = f(values(i))
      i += 1
    }
    this
  }

  override def transpose: DenseMatrix = new DenseMatrix(numCols, numRows, values, !isTransposed)

  private[spark] override def foreachActive(f: (Int, Int, Double) => Unit): Unit = {
    if (!isTransposed) {
      // outer loop over columns
      var j = 0
      while (j < numCols) {
        var i = 0
        val indStart = j * numRows
        while (i < numRows) {
          f(i, j, values(indStart + i))
          i += 1
        }
        j += 1
      }
    } else {
      // outer loop over rows
      var i = 0
      while (i < numRows) {
        var j = 0
        val indStart = i * numCols
        while (j < numCols) {
          f(i, j, values(indStart + j))
          j += 1
        }
        i += 1
      }
    }
  }

  override def numNonzeros: Int = values.count(_ != 0)

  override def numActives: Int = values.length

  /**
   * Generate a `SparseMatrix` from the given `DenseMatrix`. The new matrix will have isTransposed
   * set to false.
   */
  @Since("2.0.0")
  def toSparse: SparseMatrix = {
    val spVals: MArrayBuilder[Double] = new MArrayBuilder.ofDouble
    val colPtrs: Array[Int] = new Array[Int](numCols + 1)
    val rowIndices: MArrayBuilder[Int] = new MArrayBuilder.ofInt
    var nnz = 0
    var j = 0
    while (j < numCols) {
      var i = 0
      while (i < numRows) {
        val v = values(index(i, j))
        if (v != 0.0) {
          rowIndices += i
          spVals += v
          nnz += 1
        }
        i += 1
      }
      j += 1
      colPtrs(j) = nnz
    }
    new SparseMatrix(numRows, numCols, colPtrs, rowIndices.result(), spVals.result())
  }

  override def colIter: Iterator[Vector] = {
    if (isTransposed) {
      Iterator.tabulate(numCols) { j =>
        val col = new Array[Double](numRows)
        blas.dcopy(numRows, values, j, numCols, col, 0, 1)
        new DenseVector(col)
      }
    } else {
      Iterator.tabulate(numCols) { j =>
        new DenseVector(values.slice(j * numRows, (j + 1) * numRows))
      }
    }
  }
}

/**
 * Factory methods for [[org.apache.spark.ml.linalg.DenseMatrix]].
 */
@Since("2.0.0")
object DenseMatrix {

  /**
   * Generate a `DenseMatrix` consisting of zeros.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @return `DenseMatrix` with size `numRows` x `numCols` and values of zeros
   */
  @Since("2.0.0")
  def zeros(numRows: Int, numCols: Int): DenseMatrix = {
    require(numRows.toLong * numCols <= Int.MaxValue,
            s"$numRows x $numCols dense matrix is too large to allocate")
    new DenseMatrix(numRows, numCols, new Array[Double](numRows * numCols))
  }

  /**
   * Generate a `DenseMatrix` consisting of ones.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @return `DenseMatrix` with size `numRows` x `numCols` and values of ones
   */
  @Since("2.0.0")
  def ones(numRows: Int, numCols: Int): DenseMatrix = {
    require(numRows.toLong * numCols <= Int.MaxValue,
            s"$numRows x $numCols dense matrix is too large to allocate")
    new DenseMatrix(numRows, numCols, Array.fill(numRows * numCols)(1.0))
  }

  /**
   * Generate an Identity Matrix in `DenseMatrix` format.
   * @param n number of rows and columns of the matrix
   * @return `DenseMatrix` with size `n` x `n` and values of ones on the diagonal
   */
  @Since("2.0.0")
  def eye(n: Int): DenseMatrix = {
    val identity = DenseMatrix.zeros(n, n)
    var i = 0
    while (i < n) {
      identity.update(i, i, 1.0)
      i += 1
    }
    identity
  }

  /**
   * Generate a `DenseMatrix` consisting of `i.i.d.` uniform random numbers.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @param rng a random number generator
   * @return `DenseMatrix` with size `numRows` x `numCols` and values in U(0, 1)
   */
  @Since("2.0.0")
  def rand(numRows: Int, numCols: Int, rng: Random): DenseMatrix = {
    require(numRows.toLong * numCols <= Int.MaxValue,
            s"$numRows x $numCols dense matrix is too large to allocate")
    new DenseMatrix(numRows, numCols, Array.fill(numRows * numCols)(rng.nextDouble()))
  }

  /**
   * Generate a `DenseMatrix` consisting of `i.i.d.` gaussian random numbers.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @param rng a random number generator
   * @return `DenseMatrix` with size `numRows` x `numCols` and values in N(0, 1)
   */
  @Since("2.0.0")
  def randn(numRows: Int, numCols: Int, rng: Random): DenseMatrix = {
    require(numRows.toLong * numCols <= Int.MaxValue,
            s"$numRows x $numCols dense matrix is too large to allocate")
    new DenseMatrix(numRows, numCols, Array.fill(numRows * numCols)(rng.nextGaussian()))
  }

  /**
   * Generate a diagonal matrix in `DenseMatrix` format from the supplied values.
   * @param vector a `Vector` that will form the values on the diagonal of the matrix
   * @return Square `DenseMatrix` with size `values.length` x `values.length` and `values`
   *         on the diagonal
   */
  @Since("2.0.0")
  def diag(vector: Vector): DenseMatrix = {
    val n = vector.size
    val matrix = DenseMatrix.zeros(n, n)
    val values = vector.toArray
    var i = 0
    while (i < n) {
      matrix.update(i, i, values(i))
      i += 1
    }
    matrix
  }
}

/**
 * Column-major sparse matrix.
 * The entry values are stored in Compressed Sparse Column (CSC) format.
 * For example, the following matrix
 * {{{
 *   1.0 0.0 4.0
 *   0.0 3.0 5.0
 *   2.0 0.0 6.0
 * }}}
 * is stored as `values: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]`,
 * `rowIndices=[0, 2, 1, 0, 1, 2]`, `colPointers=[0, 2, 3, 6]`.
 *
 * @param numRows number of rows
 * @param numCols number of columns
 * @param colPtrs the index corresponding to the start of a new column (if not transposed)
 * @param rowIndices the row index of the entry (if not transposed). They must be in strictly
 *                   increasing order for each column
 * @param values nonzero matrix entries in column major (if not transposed)
 * @param isTransposed whether the matrix is transposed. If true, the matrix can be considered
 *                     Compressed Sparse Row (CSR) format, where `colPtrs` behaves as rowPtrs,
 *                     and `rowIndices` behave as colIndices, and `values` are stored in row major.
 */
@Since("2.0.0")
class SparseMatrix @Since("2.0.0") (
    @Since("2.0.0") val numRows: Int,
    @Since("2.0.0") val numCols: Int,
    @Since("2.0.0") val colPtrs: Array[Int],
    @Since("2.0.0") val rowIndices: Array[Int],
    @Since("2.0.0") val values: Array[Double],
    override val isTransposed: Boolean) extends Matrix {

  require(values.length == rowIndices.length, "The number of row indices and values don't match! " +
    s"values.length: ${values.length}, rowIndices.length: ${rowIndices.length}")
  if (isTransposed) {
    require(colPtrs.length == numRows + 1,
      s"Expecting ${numRows + 1} colPtrs when numRows = $numRows but got ${colPtrs.length}")
  } else {
    require(colPtrs.length == numCols + 1,
      s"Expecting ${numCols + 1} colPtrs when numCols = $numCols but got ${colPtrs.length}")
  }
  require(values.length == colPtrs.last, "The last value of colPtrs must equal the number of " +
    s"elements. values.length: ${values.length}, colPtrs.last: ${colPtrs.last}")

  /**
   * Column-major sparse matrix.
   * The entry values are stored in Compressed Sparse Column (CSC) format.
   * For example, the following matrix
   * {{{
   *   1.0 0.0 4.0
   *   0.0 3.0 5.0
   *   2.0 0.0 6.0
   * }}}
   * is stored as `values: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]`,
   * `rowIndices=[0, 2, 1, 0, 1, 2]`, `colPointers=[0, 2, 3, 6]`.
   *
   * @param numRows number of rows
   * @param numCols number of columns
   * @param colPtrs the index corresponding to the start of a new column
   * @param rowIndices the row index of the entry. They must be in strictly increasing
   *                   order for each column
   * @param values non-zero matrix entries in column major
   */
  @Since("2.0.0")
  def this(
      numRows: Int,
      numCols: Int,
      colPtrs: Array[Int],
      rowIndices: Array[Int],
      values: Array[Double]) = this(numRows, numCols, colPtrs, rowIndices, values, false)

  override def hashCode(): Int = asBreeze.hashCode()

  override def equals(o: Any): Boolean = o match {
    case m: Matrix => asBreeze == m.asBreeze
    case _ => false
  }

  private[ml] def asBreeze: BM[Double] = {
     if (!isTransposed) {
       new BSM[Double](values, numRows, numCols, colPtrs, rowIndices)
     } else {
       val breezeMatrix = new BSM[Double](values, numCols, numRows, colPtrs, rowIndices)
       breezeMatrix.t
     }
  }

  override def apply(i: Int, j: Int): Double = {
    val ind = index(i, j)
    if (ind < 0) 0.0 else values(ind)
  }

  private[ml] def index(i: Int, j: Int): Int = {
    require(i >= 0 && i < numRows, s"Expected 0 <= i < $numRows, got i = $i.")
    require(j >= 0 && j < numCols, s"Expected 0 <= j < $numCols, got j = $j.")
    if (!isTransposed) {
      Arrays.binarySearch(rowIndices, colPtrs(j), colPtrs(j + 1), i)
    } else {
      Arrays.binarySearch(rowIndices, colPtrs(i), colPtrs(i + 1), j)
    }
  }

  private[ml] def update(i: Int, j: Int, v: Double): Unit = {
    val ind = index(i, j)
    if (ind < 0) {
      throw new NoSuchElementException("The given row and column indices correspond to a zero " +
        "value. Only non-zero elements in Sparse Matrices can be updated.")
    } else {
      values(ind) = v
    }
  }

  override def copy: SparseMatrix = {
    new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values.clone())
  }

  private[spark] def map(f: Double => Double) =
    new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values.map(f), isTransposed)

  private[ml] def update(f: Double => Double): SparseMatrix = {
    val len = values.length
    var i = 0
    while (i < len) {
      values(i) = f(values(i))
      i += 1
    }
    this
  }

  override def transpose: SparseMatrix =
    new SparseMatrix(numCols, numRows, colPtrs, rowIndices, values, !isTransposed)

  private[spark] override def foreachActive(f: (Int, Int, Double) => Unit): Unit = {
    if (!isTransposed) {
      var j = 0
      while (j < numCols) {
        var idx = colPtrs(j)
        val idxEnd = colPtrs(j + 1)
        while (idx < idxEnd) {
          f(rowIndices(idx), j, values(idx))
          idx += 1
        }
        j += 1
      }
    } else {
      var i = 0
      while (i < numRows) {
        var idx = colPtrs(i)
        val idxEnd = colPtrs(i + 1)
        while (idx < idxEnd) {
          val j = rowIndices(idx)
          f(i, j, values(idx))
          idx += 1
        }
        i += 1
      }
    }
  }

  /**
   * Generate a `DenseMatrix` from the given `SparseMatrix`. The new matrix will have isTransposed
   * set to false.
   */
  @Since("2.0.0")
  def toDense: DenseMatrix = {
    new DenseMatrix(numRows, numCols, toArray)
  }

  override def numNonzeros: Int = values.count(_ != 0)

  override def numActives: Int = values.length

  override def colIter: Iterator[Vector] = {
    if (isTransposed) {
      val indicesArray = Array.fill(numCols)(MArrayBuilder.make[Int])
      val valuesArray = Array.fill(numCols)(MArrayBuilder.make[Double])
      var i = 0
      while (i < numRows) {
        var k = colPtrs(i)
        val rowEnd = colPtrs(i + 1)
        while (k < rowEnd) {
          val j = rowIndices(k)
          indicesArray(j) += i
          valuesArray(j) += values(k)
          k += 1
        }
        i += 1
      }
      Iterator.tabulate(numCols) { j =>
        val ii = indicesArray(j).result()
        val vv = valuesArray(j).result()
        new SparseVector(numRows, ii, vv)
      }
    } else {
      Iterator.tabulate(numCols) { j =>
        val colStart = colPtrs(j)
        val colEnd = colPtrs(j + 1)
        val ii = rowIndices.slice(colStart, colEnd)
        val vv = values.slice(colStart, colEnd)
        new SparseVector(numRows, ii, vv)
      }
    }
  }
}

/**
 * Factory methods for [[org.apache.spark.ml.linalg.SparseMatrix]].
 */
@Since("2.0.0")
object SparseMatrix {

  /**
   * Generate a `SparseMatrix` from Coordinate List (COO) format. Input must be an array of
   * (i, j, value) tuples. Entries that have duplicate values of i and j are
   * added together. Tuples where value is equal to zero will be omitted.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @param entries Array of (i, j, value) tuples
   * @return The corresponding `SparseMatrix`
   */
  @Since("2.0.0")
  def fromCOO(numRows: Int, numCols: Int, entries: Iterable[(Int, Int, Double)]): SparseMatrix = {
    val sortedEntries = entries.toSeq.sortBy(v => (v._2, v._1))
    val numEntries = sortedEntries.size
    if (sortedEntries.nonEmpty) {
      // Since the entries are sorted by column index, we only need to check the first and the last.
      for (col <- Seq(sortedEntries.head._2, sortedEntries.last._2)) {
        require(col >= 0 && col < numCols, s"Column index out of range [0, $numCols): $col.")
      }
    }
    val colPtrs = new Array[Int](numCols + 1)
    val rowIndices = MArrayBuilder.make[Int]
    rowIndices.sizeHint(numEntries)
    val values = MArrayBuilder.make[Double]
    values.sizeHint(numEntries)
    var nnz = 0
    var prevCol = 0
    var prevRow = -1
    var prevVal = 0.0
    // Append a dummy entry to include the last one at the end of the loop.
    (sortedEntries.view :+ (numRows, numCols, 1.0)).foreach { case (i, j, v) =>
      if (v != 0) {
        if (i == prevRow && j == prevCol) {
          prevVal += v
        } else {
          if (prevVal != 0) {
            require(prevRow >= 0 && prevRow < numRows,
              s"Row index out of range [0, $numRows): $prevRow.")
            nnz += 1
            rowIndices += prevRow
            values += prevVal
          }
          prevRow = i
          prevVal = v
          while (prevCol < j) {
            colPtrs(prevCol + 1) = nnz
            prevCol += 1
          }
        }
      }
    }
    new SparseMatrix(numRows, numCols, colPtrs, rowIndices.result(), values.result())
  }

  /**
   * Generate an Identity Matrix in `SparseMatrix` format.
   * @param n number of rows and columns of the matrix
   * @return `SparseMatrix` with size `n` x `n` and values of ones on the diagonal
   */
  @Since("2.0.0")
  def speye(n: Int): SparseMatrix = {
    new SparseMatrix(n, n, (0 to n).toArray, (0 until n).toArray, Array.fill(n)(1.0))
  }

  /**
   * Generates the skeleton of a random `SparseMatrix` with a given random number generator.
   * The values of the matrix returned are undefined.
   */
  private def genRandMatrix(
      numRows: Int,
      numCols: Int,
      density: Double,
      rng: Random): SparseMatrix = {
    require(numRows > 0, s"numRows must be greater than 0 but got $numRows")
    require(numCols > 0, s"numCols must be greater than 0 but got $numCols")
    require(density >= 0.0 && density <= 1.0,
      s"density must be a double in the range 0.0 <= d <= 1.0. Currently, density: $density")
    val size = numRows.toLong * numCols
    val expected = size * density
    assert(expected < Int.MaxValue,
      "The expected number of nonzeros cannot be greater than Int.MaxValue.")
    val nnz = math.ceil(expected).toInt
    if (density == 0.0) {
      new SparseMatrix(numRows, numCols, new Array[Int](numCols + 1), Array.empty, Array.empty)
    } else if (density == 1.0) {
      val colPtrs = Array.tabulate(numCols + 1)(j => j * numRows)
      val rowIndices = Array.tabulate(size.toInt)(idx => idx % numRows)
      new SparseMatrix(numRows, numCols, colPtrs, rowIndices, new Array[Double](numRows * numCols))
    } else if (density < 0.34) {
      // draw-by-draw, expected number of iterations is less than 1.5 * nnz
      val entries = MHashSet[(Int, Int)]()
      while (entries.size < nnz) {
        entries += ((rng.nextInt(numRows), rng.nextInt(numCols)))
      }
      SparseMatrix.fromCOO(numRows, numCols, entries.map(v => (v._1, v._2, 1.0)))
    } else {
      // selection-rejection method
      var idx = 0L
      var numSelected = 0
      var j = 0
      val colPtrs = new Array[Int](numCols + 1)
      val rowIndices = new Array[Int](nnz)
      while (j < numCols && numSelected < nnz) {
        var i = 0
        while (i < numRows && numSelected < nnz) {
          if (rng.nextDouble() < 1.0 * (nnz - numSelected) / (size - idx)) {
            rowIndices(numSelected) = i
            numSelected += 1
          }
          i += 1
          idx += 1
        }
        colPtrs(j + 1) = numSelected
        j += 1
      }
      new SparseMatrix(numRows, numCols, colPtrs, rowIndices, new Array[Double](nnz))
    }
  }

  /**
   * Generate a `SparseMatrix` consisting of `i.i.d`. uniform random numbers. The number of non-zero
   * elements equal the ceiling of `numRows` x `numCols` x `density`
   *
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @param density the desired density for the matrix
   * @param rng a random number generator
   * @return `SparseMatrix` with size `numRows` x `numCols` and values in U(0, 1)
   */
  @Since("2.0.0")
  def sprand(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix = {
    val mat = genRandMatrix(numRows, numCols, density, rng)
    mat.update(i => rng.nextDouble())
  }

  /**
   * Generate a `SparseMatrix` consisting of `i.i.d`. gaussian random numbers.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @param density the desired density for the matrix
   * @param rng a random number generator
   * @return `SparseMatrix` with size `numRows` x `numCols` and values in N(0, 1)
   */
  @Since("2.0.0")
  def sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix = {
    val mat = genRandMatrix(numRows, numCols, density, rng)
    mat.update(i => rng.nextGaussian())
  }

  /**
   * Generate a diagonal matrix in `SparseMatrix` format from the supplied values.
   * @param vector a `Vector` that will form the values on the diagonal of the matrix
   * @return Square `SparseMatrix` with size `values.length` x `values.length` and non-zero
   *         `values` on the diagonal
   */
  @Since("2.0.0")
  def spdiag(vector: Vector): SparseMatrix = {
    val n = vector.size
    vector match {
      case sVec: SparseVector =>
        SparseMatrix.fromCOO(n, n, sVec.indices.zip(sVec.values).map(v => (v._1, v._1, v._2)))
      case dVec: DenseVector =>
        val entries = dVec.values.zipWithIndex
        val nnzVals = entries.filter(v => v._1 != 0.0)
        SparseMatrix.fromCOO(n, n, nnzVals.map(v => (v._2, v._2, v._1)))
    }
  }
}

/**
 * Factory methods for [[org.apache.spark.ml.linalg.Matrix]].
 */
@Since("2.0.0")
object Matrices {

  /**
   * Creates a column-major dense matrix.
   *
   * @param numRows number of rows
   * @param numCols number of columns
   * @param values matrix entries in column major
   */
  @Since("2.0.0")
  def dense(numRows: Int, numCols: Int, values: Array[Double]): Matrix = {
    new DenseMatrix(numRows, numCols, values)
  }

  /**
   * Creates a column-major sparse matrix in Compressed Sparse Column (CSC) format.
   *
   * @param numRows number of rows
   * @param numCols number of columns
   * @param colPtrs the index corresponding to the start of a new column
   * @param rowIndices the row index of the entry
   * @param values non-zero matrix entries in column major
   */
  @Since("2.0.0")
  def sparse(
     numRows: Int,
     numCols: Int,
     colPtrs: Array[Int],
     rowIndices: Array[Int],
     values: Array[Double]): Matrix = {
    new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values)
  }

  /**
   * Creates a Matrix instance from a breeze matrix.
   * @param breeze a breeze matrix
   * @return a Matrix instance
   */
  private[ml] def fromBreeze(breeze: BM[Double]): Matrix = {
    breeze match {
      case dm: BDM[Double] =>
        new DenseMatrix(dm.rows, dm.cols, dm.data, dm.isTranspose)
      case sm: BSM[Double] =>
        // Spark-11507. work around breeze issue 479.
        val mat = if (sm.colPtrs.last != sm.data.length) {
          val matCopy = sm.copy
          matCopy.compact()
          matCopy
        } else {
          sm
        }
        // There is no isTranspose flag for sparse matrices in Breeze
        new SparseMatrix(mat.rows, mat.cols, mat.colPtrs, mat.rowIndices, mat.data)
      case _ =>
        throw new UnsupportedOperationException(
          s"Do not support conversion from type ${breeze.getClass.getName}.")
    }
  }

  /**
   * Generate a `Matrix` consisting of zeros.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @return `Matrix` with size `numRows` x `numCols` and values of zeros
   */
  @Since("2.0.0")
  def zeros(numRows: Int, numCols: Int): Matrix = DenseMatrix.zeros(numRows, numCols)

  /**
   * Generate a `DenseMatrix` consisting of ones.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @return `Matrix` with size `numRows` x `numCols` and values of ones
   */
  @Since("2.0.0")
  def ones(numRows: Int, numCols: Int): Matrix = DenseMatrix.ones(numRows, numCols)

  /**
   * Generate a dense Identity Matrix in `Matrix` format.
   * @param n number of rows and columns of the matrix
   * @return `Matrix` with size `n` x `n` and values of ones on the diagonal
   */
  @Since("2.0.0")
  def eye(n: Int): Matrix = DenseMatrix.eye(n)

  /**
   * Generate a sparse Identity Matrix in `Matrix` format.
   * @param n number of rows and columns of the matrix
   * @return `Matrix` with size `n` x `n` and values of ones on the diagonal
   */
  @Since("2.0.0")
  def speye(n: Int): Matrix = SparseMatrix.speye(n)

  /**
   * Generate a `DenseMatrix` consisting of `i.i.d.` uniform random numbers.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @param rng a random number generator
   * @return `Matrix` with size `numRows` x `numCols` and values in U(0, 1)
   */
  @Since("2.0.0")
  def rand(numRows: Int, numCols: Int, rng: Random): Matrix =
    DenseMatrix.rand(numRows, numCols, rng)

  /**
   * Generate a `SparseMatrix` consisting of `i.i.d.` gaussian random numbers.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @param density the desired density for the matrix
   * @param rng a random number generator
   * @return `Matrix` with size `numRows` x `numCols` and values in U(0, 1)
   */
  @Since("2.0.0")
  def sprand(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix =
    SparseMatrix.sprand(numRows, numCols, density, rng)

  /**
   * Generate a `DenseMatrix` consisting of `i.i.d.` gaussian random numbers.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @param rng a random number generator
   * @return `Matrix` with size `numRows` x `numCols` and values in N(0, 1)
   */
  @Since("2.0.0")
  def randn(numRows: Int, numCols: Int, rng: Random): Matrix =
    DenseMatrix.randn(numRows, numCols, rng)

  /**
   * Generate a `SparseMatrix` consisting of `i.i.d.` gaussian random numbers.
   * @param numRows number of rows of the matrix
   * @param numCols number of columns of the matrix
   * @param density the desired density for the matrix
   * @param rng a random number generator
   * @return `Matrix` with size `numRows` x `numCols` and values in N(0, 1)
   */
  @Since("2.0.0")
  def sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix =
    SparseMatrix.sprandn(numRows, numCols, density, rng)

  /**
   * Generate a diagonal matrix in `Matrix` format from the supplied values.
   * @param vector a `Vector` that will form the values on the diagonal of the matrix
   * @return Square `Matrix` with size `values.length` x `values.length` and `values`
   *         on the diagonal
   */
  @Since("2.0.0")
  def diag(vector: Vector): Matrix = DenseMatrix.diag(vector)

  /**
   * Horizontally concatenate a sequence of matrices. The returned matrix will be in the format
   * the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in
   * a sparse matrix. If the Array is empty, an empty `DenseMatrix` will be returned.
   * @param matrices array of matrices
   * @return a single `Matrix` composed of the matrices that were horizontally concatenated
   */
  @Since("2.0.0")
  def horzcat(matrices: Array[Matrix]): Matrix = {
    if (matrices.isEmpty) {
      return new DenseMatrix(0, 0, Array.empty)
    } else if (matrices.length == 1) {
      return matrices(0)
    }
    val numRows = matrices(0).numRows
    var hasSparse = false
    var numCols = 0
    matrices.foreach { mat =>
      require(numRows == mat.numRows, "The number of rows of the matrices in this sequence, " +
        "don't match!")
      mat match {
        case sparse: SparseMatrix => hasSparse = true
        case dense: DenseMatrix => // empty on purpose
        case _ => throw new IllegalArgumentException("Unsupported matrix format. Expected " +
          s"SparseMatrix or DenseMatrix. Instead got: ${mat.getClass}")
      }
      numCols += mat.numCols
    }
    if (!hasSparse) {
      new DenseMatrix(numRows, numCols, matrices.flatMap(_.toArray))
    } else {
      var startCol = 0
      val entries: Array[(Int, Int, Double)] = matrices.flatMap { mat =>
        val nCols = mat.numCols
        mat match {
          case spMat: SparseMatrix =>
            val data = new Array[(Int, Int, Double)](spMat.values.length)
            var cnt = 0
            spMat.foreachActive { (i, j, v) =>
              data(cnt) = (i, j + startCol, v)
              cnt += 1
            }
            startCol += nCols
            data
          case dnMat: DenseMatrix =>
            val data = new ArrayBuffer[(Int, Int, Double)]()
            dnMat.foreachActive { (i, j, v) =>
              if (v != 0.0) {
                data.append((i, j + startCol, v))
              }
            }
            startCol += nCols
            data
        }
      }
      SparseMatrix.fromCOO(numRows, numCols, entries)
    }
  }

  /**
   * Vertically concatenate a sequence of matrices. The returned matrix will be in the format
   * the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in
   * a sparse matrix. If the Array is empty, an empty `DenseMatrix` will be returned.
   * @param matrices array of matrices
   * @return a single `Matrix` composed of the matrices that were vertically concatenated
   */
  @Since("2.0.0")
  def vertcat(matrices: Array[Matrix]): Matrix = {
    if (matrices.isEmpty) {
      return new DenseMatrix(0, 0, Array.empty)
    } else if (matrices.length == 1) {
      return matrices(0)
    }
    val numCols = matrices(0).numCols
    var hasSparse = false
    var numRows = 0
    matrices.foreach { mat =>
      require(numCols == mat.numCols, "The number of rows of the matrices in this sequence, " +
        "don't match!")
      mat match {
        case sparse: SparseMatrix => hasSparse = true
        case dense: DenseMatrix => // empty on purpose
        case _ => throw new IllegalArgumentException("Unsupported matrix format. Expected " +
          s"SparseMatrix or DenseMatrix. Instead got: ${mat.getClass}")
      }
      numRows += mat.numRows
    }
    if (!hasSparse) {
      val allValues = new Array[Double](numRows * numCols)
      var startRow = 0
      matrices.foreach { mat =>
        var j = 0
        val nRows = mat.numRows
        mat.foreachActive { (i, j, v) =>
          val indStart = j * numRows + startRow
          allValues(indStart + i) = v
        }
        startRow += nRows
      }
      new DenseMatrix(numRows, numCols, allValues)
    } else {
      var startRow = 0
      val entries: Array[(Int, Int, Double)] = matrices.flatMap { mat =>
        val nRows = mat.numRows
        mat match {
          case spMat: SparseMatrix =>
            val data = new Array[(Int, Int, Double)](spMat.values.length)
            var cnt = 0
            spMat.foreachActive { (i, j, v) =>
              data(cnt) = (i + startRow, j, v)
              cnt += 1
            }
            startRow += nRows
            data
          case dnMat: DenseMatrix =>
            val data = new ArrayBuffer[(Int, Int, Double)]()
            dnMat.foreachActive { (i, j, v) =>
              if (v != 0.0) {
                data.append((i + startRow, j, v))
              }
            }
            startRow += nRows
            data
        }
      }
      SparseMatrix.fromCOO(numRows, numCols, entries)
    }
  }
}