aboutsummaryrefslogtreecommitdiff
path: root/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Vectors.scala
blob: 909fec1c0665381de4246e705f226fe0d83068ac (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.linalg

import java.lang.{Double => JavaDouble, Integer => JavaInteger, Iterable => JavaIterable}
import java.util

import scala.annotation.varargs
import scala.collection.JavaConverters._

import breeze.linalg.{DenseVector => BDV, SparseVector => BSV, Vector => BV}

import org.apache.spark.annotation.Since

/**
 * Represents a numeric vector, whose index type is Int and value type is Double.
 *
 * Note: Users should not implement this interface.
 */
@Since("2.0.0")
sealed trait Vector extends Serializable {

  /**
   * Size of the vector.
   */
  @Since("2.0.0")
  def size: Int

  /**
   * Converts the instance to a double array.
   */
  @Since("2.0.0")
  def toArray: Array[Double]

  override def equals(other: Any): Boolean = {
    other match {
      case v2: Vector =>
        if (this.size != v2.size) return false
        (this, v2) match {
          case (s1: SparseVector, s2: SparseVector) =>
            Vectors.equals(s1.indices, s1.values, s2.indices, s2.values)
          case (s1: SparseVector, d1: DenseVector) =>
            Vectors.equals(s1.indices, s1.values, 0 until d1.size, d1.values)
          case (d1: DenseVector, s1: SparseVector) =>
            Vectors.equals(0 until d1.size, d1.values, s1.indices, s1.values)
          case (_, _) => util.Arrays.equals(this.toArray, v2.toArray)
        }
      case _ => false
    }
  }

  /**
   * Returns a hash code value for the vector. The hash code is based on its size and its first 128
   * nonzero entries, using a hash algorithm similar to [[java.util.Arrays.hashCode]].
   */
  override def hashCode(): Int = {
    // This is a reference implementation. It calls return in foreachActive, which is slow.
    // Subclasses should override it with optimized implementation.
    var result: Int = 31 + size
    var nnz = 0
    this.foreachActive { (index, value) =>
      if (nnz < Vectors.MAX_HASH_NNZ) {
        // ignore explicit 0 for comparison between sparse and dense
        if (value != 0) {
          result = 31 * result + index
          val bits = java.lang.Double.doubleToLongBits(value)
          result = 31 * result + (bits ^ (bits >>> 32)).toInt
          nnz += 1
        }
      } else {
        return result
      }
    }
    result
  }

  /**
   * Converts the instance to a breeze vector.
   */
  private[spark] def asBreeze: BV[Double]

  /**
   * Gets the value of the ith element.
   * @param i index
   */
  @Since("2.0.0")
  def apply(i: Int): Double = asBreeze(i)

  /**
   * Makes a deep copy of this vector.
   */
  @Since("2.0.0")
  def copy: Vector = {
    throw new NotImplementedError(s"copy is not implemented for ${this.getClass}.")
  }

  /**
   * Applies a function `f` to all the active elements of dense and sparse vector.
   *
   * @param f the function takes two parameters where the first parameter is the index of
   *          the vector with type `Int`, and the second parameter is the corresponding value
   *          with type `Double`.
   */
  @Since("2.0.0")
  def foreachActive(f: (Int, Double) => Unit): Unit

  /**
   * Number of active entries.  An "active entry" is an element which is explicitly stored,
   * regardless of its value.  Note that inactive entries have value 0.
   */
  @Since("2.0.0")
  def numActives: Int

  /**
   * Number of nonzero elements. This scans all active values and count nonzeros.
   */
  @Since("2.0.0")
  def numNonzeros: Int

  /**
   * Converts this vector to a sparse vector with all explicit zeros removed.
   */
  @Since("2.0.0")
  def toSparse: SparseVector

  /**
   * Converts this vector to a dense vector.
   */
  @Since("2.0.0")
  def toDense: DenseVector = new DenseVector(this.toArray)

  /**
   * Returns a vector in either dense or sparse format, whichever uses less storage.
   */
  @Since("2.0.0")
  def compressed: Vector = {
    val nnz = numNonzeros
    // A dense vector needs 8 * size + 8 bytes, while a sparse vector needs 12 * nnz + 20 bytes.
    if (1.5 * (nnz + 1.0) < size) {
      toSparse
    } else {
      toDense
    }
  }

  /**
   * Find the index of a maximal element.  Returns the first maximal element in case of a tie.
   * Returns -1 if vector has length 0.
   */
  @Since("2.0.0")
  def argmax: Int
}

/**
 * Factory methods for [[org.apache.spark.ml.linalg.Vector]].
 * We don't use the name `Vector` because Scala imports
 * [[scala.collection.immutable.Vector]] by default.
 */
@Since("2.0.0")
object Vectors {

  /**
   * Creates a dense vector from its values.
   */
  @varargs
  @Since("2.0.0")
  def dense(firstValue: Double, otherValues: Double*): Vector =
    new DenseVector((firstValue +: otherValues).toArray)

  // A dummy implicit is used to avoid signature collision with the one generated by @varargs.
  /**
   * Creates a dense vector from a double array.
   */
  @Since("2.0.0")
  def dense(values: Array[Double]): Vector = new DenseVector(values)

  /**
   * Creates a sparse vector providing its index array and value array.
   *
   * @param size vector size.
   * @param indices index array, must be strictly increasing.
   * @param values value array, must have the same length as indices.
   */
  @Since("2.0.0")
  def sparse(size: Int, indices: Array[Int], values: Array[Double]): Vector =
    new SparseVector(size, indices, values)

  /**
   * Creates a sparse vector using unordered (index, value) pairs.
   *
   * @param size vector size.
   * @param elements vector elements in (index, value) pairs.
   */
  @Since("2.0.0")
  def sparse(size: Int, elements: Seq[(Int, Double)]): Vector = {
    require(size > 0, "The size of the requested sparse vector must be greater than 0.")

    val (indices, values) = elements.sortBy(_._1).unzip
    var prev = -1
    indices.foreach { i =>
      require(prev < i, s"Found duplicate indices: $i.")
      prev = i
    }
    require(prev < size, s"You may not write an element to index $prev because the declared " +
      s"size of your vector is $size")

    new SparseVector(size, indices.toArray, values.toArray)
  }

  /**
   * Creates a sparse vector using unordered (index, value) pairs in a Java friendly way.
   *
   * @param size vector size.
   * @param elements vector elements in (index, value) pairs.
   */
  @Since("2.0.0")
  def sparse(size: Int, elements: JavaIterable[(JavaInteger, JavaDouble)]): Vector = {
    sparse(size, elements.asScala.map { case (i, x) =>
      (i.intValue(), x.doubleValue())
    }.toSeq)
  }

  /**
   * Creates a vector of all zeros.
   *
   * @param size vector size
   * @return a zero vector
   */
  @Since("2.0.0")
  def zeros(size: Int): Vector = {
    new DenseVector(new Array[Double](size))
  }

  /**
   * Creates a vector instance from a breeze vector.
   */
  private[spark] def fromBreeze(breezeVector: BV[Double]): Vector = {
    breezeVector match {
      case v: BDV[Double] =>
        if (v.offset == 0 && v.stride == 1 && v.length == v.data.length) {
          new DenseVector(v.data)
        } else {
          new DenseVector(v.toArray)  // Can't use underlying array directly, so make a new one
        }
      case v: BSV[Double] =>
        if (v.index.length == v.used) {
          new SparseVector(v.length, v.index, v.data)
        } else {
          new SparseVector(v.length, v.index.slice(0, v.used), v.data.slice(0, v.used))
        }
      case v: BV[_] =>
        sys.error("Unsupported Breeze vector type: " + v.getClass.getName)
    }
  }

  /**
   * Returns the p-norm of this vector.
   * @param vector input vector.
   * @param p norm.
   * @return norm in L^p^ space.
   */
  @Since("2.0.0")
  def norm(vector: Vector, p: Double): Double = {
    require(p >= 1.0, "To compute the p-norm of the vector, we require that you specify a p>=1. " +
      s"You specified p=$p.")
    val values = vector match {
      case DenseVector(vs) => vs
      case SparseVector(n, ids, vs) => vs
      case v => throw new IllegalArgumentException("Do not support vector type " + v.getClass)
    }
    val size = values.length

    if (p == 1) {
      var sum = 0.0
      var i = 0
      while (i < size) {
        sum += math.abs(values(i))
        i += 1
      }
      sum
    } else if (p == 2) {
      var sum = 0.0
      var i = 0
      while (i < size) {
        sum += values(i) * values(i)
        i += 1
      }
      math.sqrt(sum)
    } else if (p == Double.PositiveInfinity) {
      var max = 0.0
      var i = 0
      while (i < size) {
        val value = math.abs(values(i))
        if (value > max) max = value
        i += 1
      }
      max
    } else {
      var sum = 0.0
      var i = 0
      while (i < size) {
        sum += math.pow(math.abs(values(i)), p)
        i += 1
      }
      math.pow(sum, 1.0 / p)
    }
  }

  /**
   * Returns the squared distance between two Vectors.
   * @param v1 first Vector.
   * @param v2 second Vector.
   * @return squared distance between two Vectors.
   */
  @Since("2.0.0")
  def sqdist(v1: Vector, v2: Vector): Double = {
    require(v1.size == v2.size, s"Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
      s"=${v2.size}.")
    var squaredDistance = 0.0
    (v1, v2) match {
      case (v1: SparseVector, v2: SparseVector) =>
        val v1Values = v1.values
        val v1Indices = v1.indices
        val v2Values = v2.values
        val v2Indices = v2.indices
        val nnzv1 = v1Indices.length
        val nnzv2 = v2Indices.length

        var kv1 = 0
        var kv2 = 0
        while (kv1 < nnzv1 || kv2 < nnzv2) {
          var score = 0.0

          if (kv2 >= nnzv2 || (kv1 < nnzv1 && v1Indices(kv1) < v2Indices(kv2))) {
            score = v1Values(kv1)
            kv1 += 1
          } else if (kv1 >= nnzv1 || (kv2 < nnzv2 && v2Indices(kv2) < v1Indices(kv1))) {
            score = v2Values(kv2)
            kv2 += 1
          } else {
            score = v1Values(kv1) - v2Values(kv2)
            kv1 += 1
            kv2 += 1
          }
          squaredDistance += score * score
        }

      case (v1: SparseVector, v2: DenseVector) =>
        squaredDistance = sqdist(v1, v2)

      case (v1: DenseVector, v2: SparseVector) =>
        squaredDistance = sqdist(v2, v1)

      case (DenseVector(vv1), DenseVector(vv2)) =>
        var kv = 0
        val sz = vv1.length
        while (kv < sz) {
          val score = vv1(kv) - vv2(kv)
          squaredDistance += score * score
          kv += 1
        }
      case _ =>
        throw new IllegalArgumentException("Do not support vector type " + v1.getClass +
          " and " + v2.getClass)
    }
    squaredDistance
  }

  /**
   * Returns the squared distance between DenseVector and SparseVector.
   */
  private[ml] def sqdist(v1: SparseVector, v2: DenseVector): Double = {
    var kv1 = 0
    var kv2 = 0
    val indices = v1.indices
    var squaredDistance = 0.0
    val nnzv1 = indices.length
    val nnzv2 = v2.size
    var iv1 = if (nnzv1 > 0) indices(kv1) else -1

    while (kv2 < nnzv2) {
      var score = 0.0
      if (kv2 != iv1) {
        score = v2(kv2)
      } else {
        score = v1.values(kv1) - v2(kv2)
        if (kv1 < nnzv1 - 1) {
          kv1 += 1
          iv1 = indices(kv1)
        }
      }
      squaredDistance += score * score
      kv2 += 1
    }
    squaredDistance
  }

  /**
   * Check equality between sparse/dense vectors
   */
  private[ml] def equals(
      v1Indices: IndexedSeq[Int],
      v1Values: Array[Double],
      v2Indices: IndexedSeq[Int],
      v2Values: Array[Double]): Boolean = {
    val v1Size = v1Values.length
    val v2Size = v2Values.length
    var k1 = 0
    var k2 = 0
    var allEqual = true
    while (allEqual) {
      while (k1 < v1Size && v1Values(k1) == 0) k1 += 1
      while (k2 < v2Size && v2Values(k2) == 0) k2 += 1

      if (k1 >= v1Size || k2 >= v2Size) {
        return k1 >= v1Size && k2 >= v2Size // check end alignment
      }
      allEqual = v1Indices(k1) == v2Indices(k2) && v1Values(k1) == v2Values(k2)
      k1 += 1
      k2 += 1
    }
    allEqual
  }

  /** Max number of nonzero entries used in computing hash code. */
  private[linalg] val MAX_HASH_NNZ = 128
}

/**
 * A dense vector represented by a value array.
 */
@Since("2.0.0")
class DenseVector @Since("2.0.0") ( @Since("2.0.0") val values: Array[Double]) extends Vector {

  override def size: Int = values.length

  override def toString: String = values.mkString("[", ",", "]")

  override def toArray: Array[Double] = values

  private[spark] override def asBreeze: BV[Double] = new BDV[Double](values)

  override def apply(i: Int): Double = values(i)

  override def copy: DenseVector = {
    new DenseVector(values.clone())
  }

  override def foreachActive(f: (Int, Double) => Unit): Unit = {
    var i = 0
    val localValuesSize = values.length
    val localValues = values

    while (i < localValuesSize) {
      f(i, localValues(i))
      i += 1
    }
  }

  override def equals(other: Any): Boolean = super.equals(other)

  override def hashCode(): Int = {
    var result: Int = 31 + size
    var i = 0
    val end = values.length
    var nnz = 0
    while (i < end && nnz < Vectors.MAX_HASH_NNZ) {
      val v = values(i)
      if (v != 0.0) {
        result = 31 * result + i
        val bits = java.lang.Double.doubleToLongBits(values(i))
        result = 31 * result + (bits ^ (bits >>> 32)).toInt
        nnz += 1
      }
      i += 1
    }
    result
  }

  override def numActives: Int = size

  override def numNonzeros: Int = {
    // same as values.count(_ != 0.0) but faster
    var nnz = 0
    values.foreach { v =>
      if (v != 0.0) {
        nnz += 1
      }
    }
    nnz
  }

  override def toSparse: SparseVector = {
    val nnz = numNonzeros
    val ii = new Array[Int](nnz)
    val vv = new Array[Double](nnz)
    var k = 0
    foreachActive { (i, v) =>
      if (v != 0) {
        ii(k) = i
        vv(k) = v
        k += 1
      }
    }
    new SparseVector(size, ii, vv)
  }

  override def argmax: Int = {
    if (size == 0) {
      -1
    } else {
      var maxIdx = 0
      var maxValue = values(0)
      var i = 1
      while (i < size) {
        if (values(i) > maxValue) {
          maxIdx = i
          maxValue = values(i)
        }
        i += 1
      }
      maxIdx
    }
  }
}

@Since("2.0.0")
object DenseVector {

  /** Extracts the value array from a dense vector. */
  @Since("2.0.0")
  def unapply(dv: DenseVector): Option[Array[Double]] = Some(dv.values)
}

/**
 * A sparse vector represented by an index array and an value array.
 *
 * @param size size of the vector.
 * @param indices index array, assume to be strictly increasing.
 * @param values value array, must have the same length as the index array.
 */
@Since("2.0.0")
class SparseVector @Since("2.0.0") (
    override val size: Int,
    @Since("2.0.0") val indices: Array[Int],
    @Since("2.0.0") val values: Array[Double]) extends Vector {

  require(indices.length == values.length, "Sparse vectors require that the dimension of the" +
    s" indices match the dimension of the values. You provided ${indices.length} indices and " +
    s" ${values.length} values.")
  require(indices.length <= size, s"You provided ${indices.length} indices and values, " +
    s"which exceeds the specified vector size ${size}.")

  override def toString: String =
    s"($size,${indices.mkString("[", ",", "]")},${values.mkString("[", ",", "]")})"

  override def toArray: Array[Double] = {
    val data = new Array[Double](size)
    var i = 0
    val nnz = indices.length
    while (i < nnz) {
      data(indices(i)) = values(i)
      i += 1
    }
    data
  }

  override def copy: SparseVector = {
    new SparseVector(size, indices.clone(), values.clone())
  }

  private[spark] override def asBreeze: BV[Double] = new BSV[Double](indices, values, size)

  override def foreachActive(f: (Int, Double) => Unit): Unit = {
    var i = 0
    val localValuesSize = values.length
    val localIndices = indices
    val localValues = values

    while (i < localValuesSize) {
      f(localIndices(i), localValues(i))
      i += 1
    }
  }

  override def equals(other: Any): Boolean = super.equals(other)

  override def hashCode(): Int = {
    var result: Int = 31 + size
    val end = values.length
    var k = 0
    var nnz = 0
    while (k < end && nnz < Vectors.MAX_HASH_NNZ) {
      val v = values(k)
      if (v != 0.0) {
        val i = indices(k)
        result = 31 * result + i
        val bits = java.lang.Double.doubleToLongBits(v)
        result = 31 * result + (bits ^ (bits >>> 32)).toInt
        nnz += 1
      }
      k += 1
    }
    result
  }

  override def numActives: Int = values.length

  override def numNonzeros: Int = {
    var nnz = 0
    values.foreach { v =>
      if (v != 0.0) {
        nnz += 1
      }
    }
    nnz
  }

  override def toSparse: SparseVector = {
    val nnz = numNonzeros
    if (nnz == numActives) {
      this
    } else {
      val ii = new Array[Int](nnz)
      val vv = new Array[Double](nnz)
      var k = 0
      foreachActive { (i, v) =>
        if (v != 0.0) {
          ii(k) = i
          vv(k) = v
          k += 1
        }
      }
      new SparseVector(size, ii, vv)
    }
  }

  override def argmax: Int = {
    if (size == 0) {
      -1
    } else {
      // Find the max active entry.
      var maxIdx = indices(0)
      var maxValue = values(0)
      var maxJ = 0
      var j = 1
      val na = numActives
      while (j < na) {
        val v = values(j)
        if (v > maxValue) {
          maxValue = v
          maxIdx = indices(j)
          maxJ = j
        }
        j += 1
      }

      // If the max active entry is nonpositive and there exists inactive ones, find the first zero.
      if (maxValue <= 0.0 && na < size) {
        if (maxValue == 0.0) {
          // If there exists an inactive entry before maxIdx, find it and return its index.
          if (maxJ < maxIdx) {
            var k = 0
            while (k < maxJ && indices(k) == k) {
              k += 1
            }
            maxIdx = k
          }
        } else {
          // If the max active value is negative, find and return the first inactive index.
          var k = 0
          while (k < na && indices(k) == k) {
            k += 1
          }
          maxIdx = k
        }
      }

      maxIdx
    }
  }

  /**
   * Create a slice of this vector based on the given indices.
   * @param selectedIndices Unsorted list of indices into the vector.
   *                        This does NOT do bound checking.
   * @return  New SparseVector with values in the order specified by the given indices.
   *
   * NOTE: The API needs to be discussed before making this public.
   *       Also, if we have a version assuming indices are sorted, we should optimize it.
   */
  private[spark] def slice(selectedIndices: Array[Int]): SparseVector = {
    var currentIdx = 0
    val (sliceInds, sliceVals) = selectedIndices.flatMap { origIdx =>
      val iIdx = java.util.Arrays.binarySearch(this.indices, origIdx)
      val i_v = if (iIdx >= 0) {
        Iterator((currentIdx, this.values(iIdx)))
      } else {
        Iterator()
      }
      currentIdx += 1
      i_v
    }.unzip
    new SparseVector(selectedIndices.length, sliceInds.toArray, sliceVals.toArray)
  }
}

@Since("2.0.0")
object SparseVector {
  @Since("2.0.0")
  def unapply(sv: SparseVector): Option[(Int, Array[Int], Array[Double])] =
    Some((sv.size, sv.indices, sv.values))
}