aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/ml/feature.py
blob: f35bc1463d51b5711f82f56eecc3cdecc631496a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from pyspark.rdd import ignore_unicode_prefix
from pyspark.ml.param.shared import *
from pyspark.ml.util import keyword_only
from pyspark.ml.wrapper import JavaEstimator, JavaModel, JavaTransformer
from pyspark.mllib.common import inherit_doc

__all__ = ['Binarizer', 'HashingTF', 'IDF', 'IDFModel', 'Normalizer', 'OneHotEncoder',
           'PolynomialExpansion', 'RegexTokenizer', 'StandardScaler', 'StandardScalerModel',
           'StringIndexer', 'StringIndexerModel', 'Tokenizer', 'VectorAssembler', 'VectorIndexer',
           'Word2Vec', 'Word2VecModel']


@inherit_doc
class Binarizer(JavaTransformer, HasInputCol, HasOutputCol):
    """
    Binarize a column of continuous features given a threshold.

    >>> df = sqlContext.createDataFrame([(0.5,)], ["values"])
    >>> binarizer = Binarizer(threshold=1.0, inputCol="values", outputCol="features")
    >>> binarizer.transform(df).head().features
    0.0
    >>> binarizer.setParams(outputCol="freqs").transform(df).head().freqs
    0.0
    >>> params = {binarizer.threshold: -0.5, binarizer.outputCol: "vector"}
    >>> binarizer.transform(df, params).head().vector
    1.0
    """

    _java_class = "org.apache.spark.ml.feature.Binarizer"
    # a placeholder to make it appear in the generated doc
    threshold = Param(Params._dummy(), "threshold",
                      "threshold in binary classification prediction, in range [0, 1]")

    @keyword_only
    def __init__(self, threshold=0.0, inputCol=None, outputCol=None):
        """
        __init__(self, threshold=0.0, inputCol=None, outputCol=None)
        """
        super(Binarizer, self).__init__()
        self.threshold = Param(self, "threshold",
                               "threshold in binary classification prediction, in range [0, 1]")
        self._setDefault(threshold=0.0)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, threshold=0.0, inputCol=None, outputCol=None):
        """
        setParams(self, threshold=0.0, inputCol=None, outputCol=None)
        Sets params for this Binarizer.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def setThreshold(self, value):
        """
        Sets the value of :py:attr:`threshold`.
        """
        self.paramMap[self.threshold] = value
        return self

    def getThreshold(self):
        """
        Gets the value of threshold or its default value.
        """
        return self.getOrDefault(self.threshold)


@inherit_doc
class HashingTF(JavaTransformer, HasInputCol, HasOutputCol, HasNumFeatures):
    """
    Maps a sequence of terms to their term frequencies using the
    hashing trick.

    >>> df = sqlContext.createDataFrame([(["a", "b", "c"],)], ["words"])
    >>> hashingTF = HashingTF(numFeatures=10, inputCol="words", outputCol="features")
    >>> hashingTF.transform(df).head().features
    SparseVector(10, {7: 1.0, 8: 1.0, 9: 1.0})
    >>> hashingTF.setParams(outputCol="freqs").transform(df).head().freqs
    SparseVector(10, {7: 1.0, 8: 1.0, 9: 1.0})
    >>> params = {hashingTF.numFeatures: 5, hashingTF.outputCol: "vector"}
    >>> hashingTF.transform(df, params).head().vector
    SparseVector(5, {2: 1.0, 3: 1.0, 4: 1.0})
    """

    _java_class = "org.apache.spark.ml.feature.HashingTF"

    @keyword_only
    def __init__(self, numFeatures=1 << 18, inputCol=None, outputCol=None):
        """
        __init__(self, numFeatures=1 << 18, inputCol=None, outputCol=None)
        """
        super(HashingTF, self).__init__()
        self._setDefault(numFeatures=1 << 18)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, numFeatures=1 << 18, inputCol=None, outputCol=None):
        """
        setParams(self, numFeatures=1 << 18, inputCol=None, outputCol=None)
        Sets params for this HashingTF.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)


@inherit_doc
class IDF(JavaEstimator, HasInputCol, HasOutputCol):
    """
    Compute the Inverse Document Frequency (IDF) given a collection of documents.

    >>> from pyspark.mllib.linalg import DenseVector
    >>> df = sqlContext.createDataFrame([(DenseVector([1.0, 2.0]),),
    ...     (DenseVector([0.0, 1.0]),), (DenseVector([3.0, 0.2]),)], ["tf"])
    >>> idf = IDF(minDocFreq=3, inputCol="tf", outputCol="idf")
    >>> idf.fit(df).transform(df).head().idf
    DenseVector([0.0, 0.0])
    >>> idf.setParams(outputCol="freqs").fit(df).transform(df).collect()[1].freqs
    DenseVector([0.0, 0.0])
    >>> params = {idf.minDocFreq: 1, idf.outputCol: "vector"}
    >>> idf.fit(df, params).transform(df).head().vector
    DenseVector([0.2877, 0.0])
    """

    _java_class = "org.apache.spark.ml.feature.IDF"

    # a placeholder to make it appear in the generated doc
    minDocFreq = Param(Params._dummy(), "minDocFreq",
                       "minimum of documents in which a term should appear for filtering")

    @keyword_only
    def __init__(self, minDocFreq=0, inputCol=None, outputCol=None):
        """
        __init__(self, minDocFreq=0, inputCol=None, outputCol=None)
        """
        super(IDF, self).__init__()
        self.minDocFreq = Param(self, "minDocFreq",
                                "minimum of documents in which a term should appear for filtering")
        self._setDefault(minDocFreq=0)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, minDocFreq=0, inputCol=None, outputCol=None):
        """
        setParams(self, minDocFreq=0, inputCol=None, outputCol=None)
        Sets params for this IDF.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def setMinDocFreq(self, value):
        """
        Sets the value of :py:attr:`minDocFreq`.
        """
        self.paramMap[self.minDocFreq] = value
        return self

    def getMinDocFreq(self):
        """
        Gets the value of minDocFreq or its default value.
        """
        return self.getOrDefault(self.minDocFreq)


class IDFModel(JavaModel):
    """
    Model fitted by IDF.
    """


@inherit_doc
class Normalizer(JavaTransformer, HasInputCol, HasOutputCol):
    """
     Normalize a vector to have unit norm using the given p-norm.

    >>> from pyspark.mllib.linalg import Vectors
    >>> svec = Vectors.sparse(4, {1: 4.0, 3: 3.0})
    >>> df = sqlContext.createDataFrame([(Vectors.dense([3.0, -4.0]), svec)], ["dense", "sparse"])
    >>> normalizer = Normalizer(p=2.0, inputCol="dense", outputCol="features")
    >>> normalizer.transform(df).head().features
    DenseVector([0.6, -0.8])
    >>> normalizer.setParams(inputCol="sparse", outputCol="freqs").transform(df).head().freqs
    SparseVector(4, {1: 0.8, 3: 0.6})
    >>> params = {normalizer.p: 1.0, normalizer.inputCol: "dense", normalizer.outputCol: "vector"}
    >>> normalizer.transform(df, params).head().vector
    DenseVector([0.4286, -0.5714])
    """

    # a placeholder to make it appear in the generated doc
    p = Param(Params._dummy(), "p", "the p norm value.")

    _java_class = "org.apache.spark.ml.feature.Normalizer"

    @keyword_only
    def __init__(self, p=2.0, inputCol=None, outputCol=None):
        """
        __init__(self, p=2.0, inputCol=None, outputCol=None)
        """
        super(Normalizer, self).__init__()
        self.p = Param(self, "p", "the p norm value.")
        self._setDefault(p=2.0)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, p=2.0, inputCol=None, outputCol=None):
        """
        setParams(self, p=2.0, inputCol=None, outputCol=None)
        Sets params for this Normalizer.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def setP(self, value):
        """
        Sets the value of :py:attr:`p`.
        """
        self.paramMap[self.p] = value
        return self

    def getP(self):
        """
        Gets the value of p or its default value.
        """
        return self.getOrDefault(self.p)


@inherit_doc
class OneHotEncoder(JavaTransformer, HasInputCol, HasOutputCol):
    """
    A one-hot encoder that maps a column of label indices to a column of binary vectors, with
    at most a single one-value. By default, the binary vector has an element for each category, so
    with 5 categories, an input value of 2.0 would map to an output vector of
    (0.0, 0.0, 1.0, 0.0, 0.0). If includeFirst is set to false, the first category is omitted, so
    the output vector for the previous example would be (0.0, 1.0, 0.0, 0.0) and an input value
    of 0.0 would map to a vector of all zeros. Including the first category makes the vector columns
    linearly dependent because they sum up to one.

    TODO: This method requires the use of StringIndexer first. Decouple them.

    >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
    >>> model = stringIndexer.fit(stringIndDf)
    >>> td = model.transform(stringIndDf)
    >>> encoder = OneHotEncoder(includeFirst=False, inputCol="indexed", outputCol="features")
    >>> encoder.transform(td).head().features
    SparseVector(2, {})
    >>> encoder.setParams(outputCol="freqs").transform(td).head().freqs
    SparseVector(2, {})
    >>> params = {encoder.includeFirst: True, encoder.outputCol: "test"}
    >>> encoder.transform(td, params).head().test
    SparseVector(3, {0: 1.0})
    """

    _java_class = "org.apache.spark.ml.feature.OneHotEncoder"

    # a placeholder to make it appear in the generated doc
    includeFirst = Param(Params._dummy(), "includeFirst", "include first category")

    @keyword_only
    def __init__(self, includeFirst=True, inputCol=None, outputCol=None):
        """
        __init__(self, includeFirst=True, inputCol=None, outputCol=None)
        """
        super(OneHotEncoder, self).__init__()
        self.includeFirst = Param(self, "includeFirst", "include first category")
        self._setDefault(includeFirst=True)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, includeFirst=True, inputCol=None, outputCol=None):
        """
        setParams(self, includeFirst=True, inputCol=None, outputCol=None)
        Sets params for this OneHotEncoder.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def setIncludeFirst(self, value):
        """
        Sets the value of :py:attr:`includeFirst`.
        """
        self.paramMap[self.includeFirst] = value
        return self

    def getIncludeFirst(self):
        """
        Gets the value of includeFirst or its default value.
        """
        return self.getOrDefault(self.includeFirst)


@inherit_doc
class PolynomialExpansion(JavaTransformer, HasInputCol, HasOutputCol):
    """
    Perform feature expansion in a polynomial space. As said in wikipedia of Polynomial Expansion,
    which is available at `http://en.wikipedia.org/wiki/Polynomial_expansion`, "In mathematics, an
    expansion of a product of sums expresses it as a sum of products by using the fact that
    multiplication distributes over addition". Take a 2-variable feature vector as an example:
    `(x, y)`, if we want to expand it with degree 2, then we get `(x, x * x, y, x * y, y * y)`.

    >>> from pyspark.mllib.linalg import Vectors
    >>> df = sqlContext.createDataFrame([(Vectors.dense([0.5, 2.0]),)], ["dense"])
    >>> px = PolynomialExpansion(degree=2, inputCol="dense", outputCol="expanded")
    >>> px.transform(df).head().expanded
    DenseVector([0.5, 0.25, 2.0, 1.0, 4.0])
    >>> px.setParams(outputCol="test").transform(df).head().test
    DenseVector([0.5, 0.25, 2.0, 1.0, 4.0])
    """

    _java_class = "org.apache.spark.ml.feature.PolynomialExpansion"

    # a placeholder to make it appear in the generated doc
    degree = Param(Params._dummy(), "degree", "the polynomial degree to expand (>= 1)")

    @keyword_only
    def __init__(self, degree=2, inputCol=None, outputCol=None):
        """
        __init__(self, degree=2, inputCol=None, outputCol=None)
        """
        super(PolynomialExpansion, self).__init__()
        self.degree = Param(self, "degree", "the polynomial degree to expand (>= 1)")
        self._setDefault(degree=2)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, degree=2, inputCol=None, outputCol=None):
        """
        setParams(self, degree=2, inputCol=None, outputCol=None)
        Sets params for this PolynomialExpansion.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def setDegree(self, value):
        """
        Sets the value of :py:attr:`degree`.
        """
        self.paramMap[self.degree] = value
        return self

    def getDegree(self):
        """
        Gets the value of degree or its default value.
        """
        return self.getOrDefault(self.degree)


@inherit_doc
@ignore_unicode_prefix
class RegexTokenizer(JavaTransformer, HasInputCol, HasOutputCol):
    """
    A regex based tokenizer that extracts tokens either by repeatedly matching the regex(default)
    or using it to split the text (set matching to false). Optional parameters also allow filtering
    tokens using a minimal length.
    It returns an array of strings that can be empty.

    >>> df = sqlContext.createDataFrame([("a b c",)], ["text"])
    >>> reTokenizer = RegexTokenizer(inputCol="text", outputCol="words")
    >>> reTokenizer.transform(df).head()
    Row(text=u'a b c', words=[u'a', u'b', u'c'])
    >>> # Change a parameter.
    >>> reTokenizer.setParams(outputCol="tokens").transform(df).head()
    Row(text=u'a b c', tokens=[u'a', u'b', u'c'])
    >>> # Temporarily modify a parameter.
    >>> reTokenizer.transform(df, {reTokenizer.outputCol: "words"}).head()
    Row(text=u'a b c', words=[u'a', u'b', u'c'])
    >>> reTokenizer.transform(df).head()
    Row(text=u'a b c', tokens=[u'a', u'b', u'c'])
    >>> # Must use keyword arguments to specify params.
    >>> reTokenizer.setParams("text")
    Traceback (most recent call last):
        ...
    TypeError: Method setParams forces keyword arguments.
    """

    _java_class = "org.apache.spark.ml.feature.RegexTokenizer"
    # a placeholder to make it appear in the generated doc
    minTokenLength = Param(Params._dummy(), "minTokenLength", "minimum token length (>= 0)")
    gaps = Param(Params._dummy(), "gaps", "Set regex to match gaps or tokens")
    pattern = Param(Params._dummy(), "pattern", "regex pattern used for tokenizing")

    @keyword_only
    def __init__(self, minTokenLength=1, gaps=False, pattern="\\p{L}+|[^\\p{L}\\s]+",
                 inputCol=None, outputCol=None):
        """
        __init__(self, minTokenLength=1, gaps=False, pattern="\\p{L}+|[^\\p{L}\\s]+",
                 inputCol=None, outputCol=None)
        """
        super(RegexTokenizer, self).__init__()
        self.minTokenLength = Param(self, "minLength", "minimum token length (>= 0)")
        self.gaps = Param(self, "gaps", "Set regex to match gaps or tokens")
        self.pattern = Param(self, "pattern", "regex pattern used for tokenizing")
        self._setDefault(minTokenLength=1, gaps=False, pattern="\\p{L}+|[^\\p{L}\\s]+")
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, minTokenLength=1, gaps=False, pattern="\\p{L}+|[^\\p{L}\\s]+",
                  inputCol=None, outputCol=None):
        """
        setParams(self, minTokenLength=1, gaps=False, pattern="\\p{L}+|[^\\p{L}\\s]+",
                  inputCol="input", outputCol="output")
        Sets params for this RegexTokenizer.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def setMinTokenLength(self, value):
        """
        Sets the value of :py:attr:`minTokenLength`.
        """
        self.paramMap[self.minTokenLength] = value
        return self

    def getMinTokenLength(self):
        """
        Gets the value of minTokenLength or its default value.
        """
        return self.getOrDefault(self.minTokenLength)

    def setGaps(self, value):
        """
        Sets the value of :py:attr:`gaps`.
        """
        self.paramMap[self.gaps] = value
        return self

    def getGaps(self):
        """
        Gets the value of gaps or its default value.
        """
        return self.getOrDefault(self.gaps)

    def setPattern(self, value):
        """
        Sets the value of :py:attr:`pattern`.
        """
        self.paramMap[self.pattern] = value
        return self

    def getPattern(self):
        """
        Gets the value of pattern or its default value.
        """
        return self.getOrDefault(self.pattern)


@inherit_doc
class StandardScaler(JavaEstimator, HasInputCol, HasOutputCol):
    """
    Standardizes features by removing the mean and scaling to unit variance using column summary
    statistics on the samples in the training set.

    >>> from pyspark.mllib.linalg import Vectors
    >>> df = sqlContext.createDataFrame([(Vectors.dense([0.0]),), (Vectors.dense([2.0]),)], ["a"])
    >>> standardScaler = StandardScaler(inputCol="a", outputCol="scaled")
    >>> model = standardScaler.fit(df)
    >>> model.transform(df).collect()[1].scaled
    DenseVector([1.4142])
    """

    _java_class = "org.apache.spark.ml.feature.StandardScaler"

    # a placeholder to make it appear in the generated doc
    withMean = Param(Params._dummy(), "withMean", "Center data with mean")
    withStd = Param(Params._dummy(), "withStd", "Scale to unit standard deviation")

    @keyword_only
    def __init__(self, withMean=False, withStd=True, inputCol=None, outputCol=None):
        """
        __init__(self, withMean=False, withStd=True, inputCol=None, outputCol=None)
        """
        super(StandardScaler, self).__init__()
        self.withMean = Param(self, "withMean", "Center data with mean")
        self.withStd = Param(self, "withStd", "Scale to unit standard deviation")
        self._setDefault(withMean=False, withStd=True)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, withMean=False, withStd=True, inputCol=None, outputCol=None):
        """
        setParams(self, withMean=False, withStd=True, inputCol=None, outputCol=None)
        Sets params for this StandardScaler.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def setWithMean(self, value):
        """
        Sets the value of :py:attr:`withMean`.
        """
        self.paramMap[self.withMean] = value
        return self

    def getWithMean(self):
        """
        Gets the value of withMean or its default value.
        """
        return self.getOrDefault(self.withMean)

    def setWithStd(self, value):
        """
        Sets the value of :py:attr:`withStd`.
        """
        self.paramMap[self.withStd] = value
        return self

    def getWithStd(self):
        """
        Gets the value of withStd or its default value.
        """
        return self.getOrDefault(self.withStd)


class StandardScalerModel(JavaModel):
    """
    Model fitted by StandardScaler.
    """


@inherit_doc
class StringIndexer(JavaEstimator, HasInputCol, HasOutputCol):
    """
    A label indexer that maps a string column of labels to an ML column of label indices.
    If the input column is numeric, we cast it to string and index the string values.
    The indices are in [0, numLabels), ordered by label frequencies.
    So the most frequent label gets index 0.

    >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
    >>> model = stringIndexer.fit(stringIndDf)
    >>> td = model.transform(stringIndDf)
    >>> sorted(set([(i[0], i[1]) for i in td.select(td.id, td.indexed).collect()]),
    ...     key=lambda x: x[0])
    [(0, 0.0), (1, 2.0), (2, 1.0), (3, 0.0), (4, 0.0), (5, 1.0)]
    """

    _java_class = "org.apache.spark.ml.feature.StringIndexer"

    @keyword_only
    def __init__(self, inputCol=None, outputCol=None):
        """
        __init__(self, inputCol=None, outputCol=None)
        """
        super(StringIndexer, self).__init__()
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, inputCol=None, outputCol=None):
        """
        setParams(self, inputCol=None, outputCol=None)
        Sets params for this StringIndexer.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)


class StringIndexerModel(JavaModel):
    """
    Model fitted by StringIndexer.
    """


@inherit_doc
@ignore_unicode_prefix
class Tokenizer(JavaTransformer, HasInputCol, HasOutputCol):
    """
    A tokenizer that converts the input string to lowercase and then
    splits it by white spaces.

    >>> df = sqlContext.createDataFrame([("a b c",)], ["text"])
    >>> tokenizer = Tokenizer(inputCol="text", outputCol="words")
    >>> tokenizer.transform(df).head()
    Row(text=u'a b c', words=[u'a', u'b', u'c'])
    >>> # Change a parameter.
    >>> tokenizer.setParams(outputCol="tokens").transform(df).head()
    Row(text=u'a b c', tokens=[u'a', u'b', u'c'])
    >>> # Temporarily modify a parameter.
    >>> tokenizer.transform(df, {tokenizer.outputCol: "words"}).head()
    Row(text=u'a b c', words=[u'a', u'b', u'c'])
    >>> tokenizer.transform(df).head()
    Row(text=u'a b c', tokens=[u'a', u'b', u'c'])
    >>> # Must use keyword arguments to specify params.
    >>> tokenizer.setParams("text")
    Traceback (most recent call last):
        ...
    TypeError: Method setParams forces keyword arguments.
    """

    _java_class = "org.apache.spark.ml.feature.Tokenizer"

    @keyword_only
    def __init__(self, inputCol=None, outputCol=None):
        """
        __init__(self, inputCol=None, outputCol=None)
        """
        super(Tokenizer, self).__init__()
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, inputCol=None, outputCol=None):
        """
        setParams(self, inputCol="input", outputCol="output")
        Sets params for this Tokenizer.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)


@inherit_doc
class VectorAssembler(JavaTransformer, HasInputCols, HasOutputCol):
    """
    A feature transformer that merges multiple columns into a vector column.

    >>> df = sqlContext.createDataFrame([(1, 0, 3)], ["a", "b", "c"])
    >>> vecAssembler = VectorAssembler(inputCols=["a", "b", "c"], outputCol="features")
    >>> vecAssembler.transform(df).head().features
    DenseVector([1.0, 0.0, 3.0])
    >>> vecAssembler.setParams(outputCol="freqs").transform(df).head().freqs
    DenseVector([1.0, 0.0, 3.0])
    >>> params = {vecAssembler.inputCols: ["b", "a"], vecAssembler.outputCol: "vector"}
    >>> vecAssembler.transform(df, params).head().vector
    DenseVector([0.0, 1.0])
    """

    _java_class = "org.apache.spark.ml.feature.VectorAssembler"

    @keyword_only
    def __init__(self, inputCols=None, outputCol=None):
        """
        __init__(self, inputCols=None, outputCol=None)
        """
        super(VectorAssembler, self).__init__()
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, inputCols=None, outputCol=None):
        """
        setParams(self, inputCols=None, outputCol=None)
        Sets params for this VectorAssembler.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)


@inherit_doc
class VectorIndexer(JavaEstimator, HasInputCol, HasOutputCol):
    """
    Class for indexing categorical feature columns in a dataset of [[Vector]].

    This has 2 usage modes:
      - Automatically identify categorical features (default behavior)
         - This helps process a dataset of unknown vectors into a dataset with some continuous
           features and some categorical features. The choice between continuous and categorical
           is based upon a maxCategories parameter.
         - Set maxCategories to the maximum number of categorical any categorical feature should
           have.
         - E.g.: Feature 0 has unique values {-1.0, 0.0}, and feature 1 values {1.0, 3.0, 5.0}.
           If maxCategories = 2, then feature 0 will be declared categorical and use indices {0, 1},
           and feature 1 will be declared continuous.
      - Index all features, if all features are categorical
         - If maxCategories is set to be very large, then this will build an index of unique
           values for all features.
         - Warning: This can cause problems if features are continuous since this will collect ALL
           unique values to the driver.
         - E.g.: Feature 0 has unique values {-1.0, 0.0}, and feature 1 values {1.0, 3.0, 5.0}.
           If maxCategories >= 3, then both features will be declared categorical.

     This returns a model which can transform categorical features to use 0-based indices.

    Index stability:
      - This is not guaranteed to choose the same category index across multiple runs.
      - If a categorical feature includes value 0, then this is guaranteed to map value 0 to
        index 0. This maintains vector sparsity.
      - More stability may be added in the future.

     TODO: Future extensions: The following functionality is planned for the future:
      - Preserve metadata in transform; if a feature's metadata is already present,
        do not recompute.
      - Specify certain features to not index, either via a parameter or via existing metadata.
      - Add warning if a categorical feature has only 1 category.
      - Add option for allowing unknown categories.

    >>> from pyspark.mllib.linalg import Vectors
    >>> df = sqlContext.createDataFrame([(Vectors.dense([-1.0, 0.0]),),
    ...     (Vectors.dense([0.0, 1.0]),), (Vectors.dense([0.0, 2.0]),)], ["a"])
    >>> indexer = VectorIndexer(maxCategories=2, inputCol="a", outputCol="indexed")
    >>> model = indexer.fit(df)
    >>> model.transform(df).head().indexed
    DenseVector([1.0, 0.0])
    >>> indexer.setParams(outputCol="test").fit(df).transform(df).collect()[1].test
    DenseVector([0.0, 1.0])
    >>> params = {indexer.maxCategories: 3, indexer.outputCol: "vector"}
    >>> model2 = indexer.fit(df, params)
    >>> model2.transform(df).head().vector
    DenseVector([1.0, 0.0])
    """

    _java_class = "org.apache.spark.ml.feature.VectorIndexer"
    # a placeholder to make it appear in the generated doc
    maxCategories = Param(Params._dummy(), "maxCategories",
                          "Threshold for the number of values a categorical feature can take " +
                          "(>= 2). If a feature is found to have > maxCategories values, then " +
                          "it is declared continuous.")

    @keyword_only
    def __init__(self, maxCategories=20, inputCol=None, outputCol=None):
        """
        __init__(self, maxCategories=20, inputCol=None, outputCol=None)
        """
        super(VectorIndexer, self).__init__()
        self.maxCategories = Param(self, "maxCategories",
                                   "Threshold for the number of values a categorical feature " +
                                   "can take (>= 2). If a feature is found to have " +
                                   "> maxCategories values, then it is declared continuous.")
        self._setDefault(maxCategories=20)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, maxCategories=20, inputCol=None, outputCol=None):
        """
        setParams(self, maxCategories=20, inputCol=None, outputCol=None)
        Sets params for this VectorIndexer.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def setMaxCategories(self, value):
        """
        Sets the value of :py:attr:`maxCategories`.
        """
        self.paramMap[self.maxCategories] = value
        return self

    def getMaxCategories(self):
        """
        Gets the value of maxCategories or its default value.
        """
        return self.getOrDefault(self.maxCategories)


@inherit_doc
@ignore_unicode_prefix
class Word2Vec(JavaEstimator, HasStepSize, HasMaxIter, HasSeed, HasInputCol, HasOutputCol):
    """
    Word2Vec trains a model of `Map(String, Vector)`, i.e. transforms a word into a code for further
    natural language processing or machine learning process.

    >>> sent = ("a b " * 100 + "a c " * 10).split(" ")
    >>> doc = sqlContext.createDataFrame([(sent,), (sent,)], ["sentence"])
    >>> model = Word2Vec(vectorSize=5, seed=42, inputCol="sentence", outputCol="model").fit(doc)
    >>> model.transform(doc).head().model
    DenseVector([-0.0422, -0.5138, -0.2546, 0.6885, 0.276])
    """

    _java_class = "org.apache.spark.ml.feature.Word2Vec"
    # a placeholder to make it appear in the generated doc
    vectorSize = Param(Params._dummy(), "vectorSize",
                       "the dimension of codes after transforming from words")
    numPartitions = Param(Params._dummy(), "numPartitions",
                          "number of partitions for sentences of words")
    minCount = Param(Params._dummy(), "minCount",
                     "the minimum number of times a token must appear to be included in the " +
                     "word2vec model's vocabulary")

    @keyword_only
    def __init__(self, vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1,
                 seed=42, inputCol=None, outputCol=None):
        """
        __init__(self, vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1,
                 seed=42, inputCol=None, outputCol=None)
        """
        super(Word2Vec, self).__init__()
        self.vectorSize = Param(self, "vectorSize",
                                "the dimension of codes after transforming from words")
        self.numPartitions = Param(self, "numPartitions",
                                   "number of partitions for sentences of words")
        self.minCount = Param(self, "minCount",
                              "the minimum number of times a token must appear to be included " +
                              "in the word2vec model's vocabulary")
        self._setDefault(vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1,
                         seed=42)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1,
                  seed=42, inputCol=None, outputCol=None):
        """
        setParams(self, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, seed=42,
                 inputCol=None, outputCol=None)
        Sets params for this Word2Vec.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def setVectorSize(self, value):
        """
        Sets the value of :py:attr:`vectorSize`.
        """
        self.paramMap[self.vectorSize] = value
        return self

    def getVectorSize(self):
        """
        Gets the value of vectorSize or its default value.
        """
        return self.getOrDefault(self.vectorSize)

    def setNumPartitions(self, value):
        """
        Sets the value of :py:attr:`numPartitions`.
        """
        self.paramMap[self.numPartitions] = value
        return self

    def getNumPartitions(self):
        """
        Gets the value of numPartitions or its default value.
        """
        return self.getOrDefault(self.numPartitions)

    def setMinCount(self, value):
        """
        Sets the value of :py:attr:`minCount`.
        """
        self.paramMap[self.minCount] = value
        return self

    def getMinCount(self):
        """
        Gets the value of minCount or its default value.
        """
        return self.getOrDefault(self.minCount)


class Word2VecModel(JavaModel):
    """
    Model fitted by Word2Vec.
    """


if __name__ == "__main__":
    import doctest
    from pyspark.context import SparkContext
    from pyspark.sql import Row, SQLContext
    globs = globals().copy()
    # The small batch size here ensures that we see multiple batches,
    # even in these small test examples:
    sc = SparkContext("local[2]", "ml.feature tests")
    sqlContext = SQLContext(sc)
    globs['sc'] = sc
    globs['sqlContext'] = sqlContext
    testData = sc.parallelize([Row(id=0, label="a"), Row(id=1, label="b"),
                               Row(id=2, label="c"), Row(id=3, label="a"),
                               Row(id=4, label="a"), Row(id=5, label="c")], 2)
    globs['stringIndDf'] = sqlContext.createDataFrame(testData)
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    sc.stop()
    if failure_count:
        exit(-1)