aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/classification.py
blob: ffdda7ee19302cc85158cec06f8fd6a284b43fd0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import numpy

from numpy import array, shape
from pyspark import SparkContext
from pyspark.mllib._common import \
    _dot, _get_unmangled_rdd, _get_unmangled_double_vector_rdd, \
    _serialize_double_matrix, _deserialize_double_matrix, \
    _serialize_double_vector, _deserialize_double_vector, \
    _get_initial_weights, _serialize_rating, _regression_train_wrapper, \
    _linear_predictor_typecheck, _get_unmangled_labeled_point_rdd
from pyspark.mllib.linalg import SparseVector
from pyspark.mllib.regression import LabeledPoint, LinearModel
from math import exp, log


class LogisticRegressionModel(LinearModel):

    """A linear binary classification model derived from logistic regression.

    >>> data = [
    ...     LabeledPoint(0.0, [0.0]),
    ...     LabeledPoint(1.0, [1.0]),
    ...     LabeledPoint(1.0, [2.0]),
    ...     LabeledPoint(1.0, [3.0])
    ... ]
    >>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data))
    >>> lrm.predict(array([1.0])) > 0
    True
    >>> lrm.predict(array([0.0])) <= 0
    True
    >>> sparse_data = [
    ...     LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
    ...     LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
    ... ]
    >>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data))
    >>> lrm.predict(array([0.0, 1.0])) > 0
    True
    >>> lrm.predict(array([0.0, 0.0])) <= 0
    True
    >>> lrm.predict(SparseVector(2, {1: 1.0})) > 0
    True
    >>> lrm.predict(SparseVector(2, {1: 0.0})) <= 0
    True
    """

    def predict(self, x):
        _linear_predictor_typecheck(x, self._coeff)
        margin = _dot(x, self._coeff) + self._intercept
        if margin > 0:
            prob = 1 / (1 + exp(-margin))
        else:
            exp_margin = exp(margin)
            prob = exp_margin / (1 + exp_margin)
        return 1 if prob > 0.5 else 0


class LogisticRegressionWithSGD(object):

    @classmethod
    def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
              initialWeights=None, regParam=1.0, regType=None, intercept=False):
        """
        Train a logistic regression model on the given data.

        @param data:              The training data.
        @param iterations:        The number of iterations (default: 100).
        @param step:              The step parameter used in SGD
                                  (default: 1.0).
        @param miniBatchFraction: Fraction of data to be used for each SGD
                                  iteration.
        @param initialWeights:    The initial weights (default: None).
        @param regParam:          The regularizer parameter (default: 1.0).
        @param regType:           The type of regularizer used for training
                                  our model.
                                  Allowed values: "l1" for using L1Updater,
                                                  "l2" for using
                                                       SquaredL2Updater,
                                                  "none" for no regularizer.
                                  (default: "none")
        @param intercept:         Boolean parameter which indicates the use
                                  or not of the augmented representation for
                                  training data (i.e. whether bias features
                                  are activated or not).
        """
        sc = data.context
        if regType is None:
            regType = "none"
        train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainLogisticRegressionModelWithSGD(
            d._jrdd, iterations, step, miniBatchFraction, i, regParam, regType, intercept)
        return _regression_train_wrapper(sc, train_func, LogisticRegressionModel, data,
                                         initialWeights)


class SVMModel(LinearModel):

    """A support vector machine.

    >>> data = [
    ...     LabeledPoint(0.0, [0.0]),
    ...     LabeledPoint(1.0, [1.0]),
    ...     LabeledPoint(1.0, [2.0]),
    ...     LabeledPoint(1.0, [3.0])
    ... ]
    >>> svm = SVMWithSGD.train(sc.parallelize(data))
    >>> svm.predict(array([1.0])) > 0
    True
    >>> sparse_data = [
    ...     LabeledPoint(0.0, SparseVector(2, {0: -1.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
    ...     LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
    ... ]
    >>> svm = SVMWithSGD.train(sc.parallelize(sparse_data))
    >>> svm.predict(SparseVector(2, {1: 1.0})) > 0
    True
    >>> svm.predict(SparseVector(2, {0: -1.0})) <= 0
    True
    """

    def predict(self, x):
        _linear_predictor_typecheck(x, self._coeff)
        margin = _dot(x, self._coeff) + self._intercept
        return 1 if margin >= 0 else 0


class SVMWithSGD(object):

    @classmethod
    def train(cls, data, iterations=100, step=1.0, regParam=1.0,
              miniBatchFraction=1.0, initialWeights=None, regType=None, intercept=False):
        """
        Train a support vector machine on the given data.

        @param data:              The training data.
        @param iterations:        The number of iterations (default: 100).
        @param step:              The step parameter used in SGD
                                  (default: 1.0).
        @param regParam:          The regularizer parameter (default: 1.0).
        @param miniBatchFraction: Fraction of data to be used for each SGD
                                  iteration.
        @param initialWeights:    The initial weights (default: None).
        @param regType:           The type of regularizer used for training
                                  our model.
                                  Allowed values: "l1" for using L1Updater,
                                                  "l2" for using
                                                       SquaredL2Updater,
                                                  "none" for no regularizer.
                                  (default: "none")
        @param intercept:         Boolean parameter which indicates the use
                                  or not of the augmented representation for
                                  training data (i.e. whether bias features
                                  are activated or not).
        """
        sc = data.context
        if regType is None:
            regType = "none"
        train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainSVMModelWithSGD(
            d._jrdd, iterations, step, regParam, miniBatchFraction, i, regType, intercept)
        return _regression_train_wrapper(sc, train_func, SVMModel, data, initialWeights)


class NaiveBayesModel(object):

    """
    Model for Naive Bayes classifiers.

    Contains two parameters:
    - pi: vector of logs of class priors (dimension C)
    - theta: matrix of logs of class conditional probabilities (CxD)

    >>> data = [
    ...     LabeledPoint(0.0, [0.0, 0.0]),
    ...     LabeledPoint(0.0, [0.0, 1.0]),
    ...     LabeledPoint(1.0, [1.0, 0.0]),
    ... ]
    >>> model = NaiveBayes.train(sc.parallelize(data))
    >>> model.predict(array([0.0, 1.0]))
    0.0
    >>> model.predict(array([1.0, 0.0]))
    1.0
    >>> sparse_data = [
    ...     LabeledPoint(0.0, SparseVector(2, {1: 0.0})),
    ...     LabeledPoint(0.0, SparseVector(2, {1: 1.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {0: 1.0}))
    ... ]
    >>> model = NaiveBayes.train(sc.parallelize(sparse_data))
    >>> model.predict(SparseVector(2, {1: 1.0}))
    0.0
    >>> model.predict(SparseVector(2, {0: 1.0}))
    1.0
    """

    def __init__(self, labels, pi, theta):
        self.labels = labels
        self.pi = pi
        self.theta = theta

    def predict(self, x):
        """Return the most likely class for a data vector x"""
        return self.labels[numpy.argmax(self.pi + _dot(x, self.theta.transpose()))]


class NaiveBayes(object):

    @classmethod
    def train(cls, data, lambda_=1.0):
        """
        Train a Naive Bayes model given an RDD of (label, features) vectors.

        This is the Multinomial NB (U{http://tinyurl.com/lsdw6p}) which can
        handle all kinds of discrete data.  For example, by converting
        documents into TF-IDF vectors, it can be used for document
        classification.  By making every vector a 0-1 vector, it can also be
        used as Bernoulli NB (U{http://tinyurl.com/p7c96j6}).

        @param data: RDD of NumPy vectors, one per element, where the first
               coordinate is the label and the rest is the feature vector
               (e.g. a count vector).
        @param lambda_: The smoothing parameter
        """
        sc = data.context
        dataBytes = _get_unmangled_labeled_point_rdd(data)
        ans = sc._jvm.PythonMLLibAPI().trainNaiveBayes(dataBytes._jrdd, lambda_)
        return NaiveBayesModel(
            _deserialize_double_vector(ans[0]),
            _deserialize_double_vector(ans[1]),
            _deserialize_double_matrix(ans[2]))


def _test():
    import doctest
    globs = globals().copy()
    globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)

if __name__ == "__main__":
    _test()