aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/evaluation.py
blob: 22e68ea5b45114c5cf3438afe71aef1540e84c2c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from pyspark import since
from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc
from pyspark.sql import SQLContext
from pyspark.sql.types import StructField, StructType, DoubleType, IntegerType, ArrayType

__all__ = ['BinaryClassificationMetrics', 'RegressionMetrics',
           'MulticlassMetrics', 'RankingMetrics']


class BinaryClassificationMetrics(JavaModelWrapper):
    """
    Evaluator for binary classification.

    :param scoreAndLabels: an RDD of (score, label) pairs

    >>> scoreAndLabels = sc.parallelize([
    ...     (0.1, 0.0), (0.1, 1.0), (0.4, 0.0), (0.6, 0.0), (0.6, 1.0), (0.6, 1.0), (0.8, 1.0)], 2)
    >>> metrics = BinaryClassificationMetrics(scoreAndLabels)
    >>> metrics.areaUnderROC
    0.70...
    >>> metrics.areaUnderPR
    0.83...
    >>> metrics.unpersist()

    .. versionadded:: 1.4.0
    """

    def __init__(self, scoreAndLabels):
        sc = scoreAndLabels.ctx
        sql_ctx = SQLContext.getOrCreate(sc)
        df = sql_ctx.createDataFrame(scoreAndLabels, schema=StructType([
            StructField("score", DoubleType(), nullable=False),
            StructField("label", DoubleType(), nullable=False)]))
        java_class = sc._jvm.org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
        java_model = java_class(df._jdf)
        super(BinaryClassificationMetrics, self).__init__(java_model)

    @property
    @since('1.4.0')
    def areaUnderROC(self):
        """
        Computes the area under the receiver operating characteristic
        (ROC) curve.
        """
        return self.call("areaUnderROC")

    @property
    @since('1.4.0')
    def areaUnderPR(self):
        """
        Computes the area under the precision-recall curve.
        """
        return self.call("areaUnderPR")

    @since('1.4.0')
    def unpersist(self):
        """
        Unpersists intermediate RDDs used in the computation.
        """
        self.call("unpersist")


class RegressionMetrics(JavaModelWrapper):
    """
    Evaluator for regression.

    :param predictionAndObservations: an RDD of (prediction,
                                      observation) pairs.

    >>> predictionAndObservations = sc.parallelize([
    ...     (2.5, 3.0), (0.0, -0.5), (2.0, 2.0), (8.0, 7.0)])
    >>> metrics = RegressionMetrics(predictionAndObservations)
    >>> metrics.explainedVariance
    8.859...
    >>> metrics.meanAbsoluteError
    0.5...
    >>> metrics.meanSquaredError
    0.37...
    >>> metrics.rootMeanSquaredError
    0.61...
    >>> metrics.r2
    0.94...

    .. versionadded:: 1.4.0
    """

    def __init__(self, predictionAndObservations):
        sc = predictionAndObservations.ctx
        sql_ctx = SQLContext.getOrCreate(sc)
        df = sql_ctx.createDataFrame(predictionAndObservations, schema=StructType([
            StructField("prediction", DoubleType(), nullable=False),
            StructField("observation", DoubleType(), nullable=False)]))
        java_class = sc._jvm.org.apache.spark.mllib.evaluation.RegressionMetrics
        java_model = java_class(df._jdf)
        super(RegressionMetrics, self).__init__(java_model)

    @property
    @since('1.4.0')
    def explainedVariance(self):
        """
        Returns the explained variance regression score.
        explainedVariance = 1 - variance(y - \hat{y}) / variance(y)
        """
        return self.call("explainedVariance")

    @property
    @since('1.4.0')
    def meanAbsoluteError(self):
        """
        Returns the mean absolute error, which is a risk function corresponding to the
        expected value of the absolute error loss or l1-norm loss.
        """
        return self.call("meanAbsoluteError")

    @property
    @since('1.4.0')
    def meanSquaredError(self):
        """
        Returns the mean squared error, which is a risk function corresponding to the
        expected value of the squared error loss or quadratic loss.
        """
        return self.call("meanSquaredError")

    @property
    @since('1.4.0')
    def rootMeanSquaredError(self):
        """
        Returns the root mean squared error, which is defined as the square root of
        the mean squared error.
        """
        return self.call("rootMeanSquaredError")

    @property
    @since('1.4.0')
    def r2(self):
        """
        Returns R^2^, the coefficient of determination.
        """
        return self.call("r2")


class MulticlassMetrics(JavaModelWrapper):
    """
    Evaluator for multiclass classification.

    :param predictionAndLabels: an RDD of (prediction, label) pairs.

    >>> predictionAndLabels = sc.parallelize([(0.0, 0.0), (0.0, 1.0), (0.0, 0.0),
    ...     (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)])
    >>> metrics = MulticlassMetrics(predictionAndLabels)
    >>> metrics.confusionMatrix().toArray()
    array([[ 2.,  1.,  1.],
           [ 1.,  3.,  0.],
           [ 0.,  0.,  1.]])
    >>> metrics.falsePositiveRate(0.0)
    0.2...
    >>> metrics.precision(1.0)
    0.75...
    >>> metrics.recall(2.0)
    1.0...
    >>> metrics.fMeasure(0.0, 2.0)
    0.52...
    >>> metrics.precision()
    0.66...
    >>> metrics.recall()
    0.66...
    >>> metrics.weightedFalsePositiveRate
    0.19...
    >>> metrics.weightedPrecision
    0.68...
    >>> metrics.weightedRecall
    0.66...
    >>> metrics.weightedFMeasure()
    0.66...
    >>> metrics.weightedFMeasure(2.0)
    0.65...

    .. versionadded:: 1.4.0
    """

    def __init__(self, predictionAndLabels):
        sc = predictionAndLabels.ctx
        sql_ctx = SQLContext.getOrCreate(sc)
        df = sql_ctx.createDataFrame(predictionAndLabels, schema=StructType([
            StructField("prediction", DoubleType(), nullable=False),
            StructField("label", DoubleType(), nullable=False)]))
        java_class = sc._jvm.org.apache.spark.mllib.evaluation.MulticlassMetrics
        java_model = java_class(df._jdf)
        super(MulticlassMetrics, self).__init__(java_model)

    @since('1.4.0')
    def confusionMatrix(self):
        """
        Returns confusion matrix: predicted classes are in columns,
        they are ordered by class label ascending, as in "labels".
        """
        return self.call("confusionMatrix")

    @since('1.4.0')
    def truePositiveRate(self, label):
        """
        Returns true positive rate for a given label (category).
        """
        return self.call("truePositiveRate", label)

    @since('1.4.0')
    def falsePositiveRate(self, label):
        """
        Returns false positive rate for a given label (category).
        """
        return self.call("falsePositiveRate", label)

    @since('1.4.0')
    def precision(self, label=None):
        """
        Returns precision or precision for a given label (category) if specified.
        """
        if label is None:
            return self.call("precision")
        else:
            return self.call("precision", float(label))

    @since('1.4.0')
    def recall(self, label=None):
        """
        Returns recall or recall for a given label (category) if specified.
        """
        if label is None:
            return self.call("recall")
        else:
            return self.call("recall", float(label))

    @since('1.4.0')
    def fMeasure(self, label=None, beta=None):
        """
        Returns f-measure or f-measure for a given label (category) if specified.
        """
        if beta is None:
            if label is None:
                return self.call("fMeasure")
            else:
                return self.call("fMeasure", label)
        else:
            if label is None:
                raise Exception("If the beta parameter is specified, label can not be none")
            else:
                return self.call("fMeasure", label, beta)

    @property
    @since('1.4.0')
    def weightedTruePositiveRate(self):
        """
        Returns weighted true positive rate.
        (equals to precision, recall and f-measure)
        """
        return self.call("weightedTruePositiveRate")

    @property
    @since('1.4.0')
    def weightedFalsePositiveRate(self):
        """
        Returns weighted false positive rate.
        """
        return self.call("weightedFalsePositiveRate")

    @property
    @since('1.4.0')
    def weightedRecall(self):
        """
        Returns weighted averaged recall.
        (equals to precision, recall and f-measure)
        """
        return self.call("weightedRecall")

    @property
    @since('1.4.0')
    def weightedPrecision(self):
        """
        Returns weighted averaged precision.
        """
        return self.call("weightedPrecision")

    @since('1.4.0')
    def weightedFMeasure(self, beta=None):
        """
        Returns weighted averaged f-measure.
        """
        if beta is None:
            return self.call("weightedFMeasure")
        else:
            return self.call("weightedFMeasure", beta)


class RankingMetrics(JavaModelWrapper):
    """
    Evaluator for ranking algorithms.

    :param predictionAndLabels: an RDD of (predicted ranking,
                                ground truth set) pairs.

    >>> predictionAndLabels = sc.parallelize([
    ...     ([1, 6, 2, 7, 8, 3, 9, 10, 4, 5], [1, 2, 3, 4, 5]),
    ...     ([4, 1, 5, 6, 2, 7, 3, 8, 9, 10], [1, 2, 3]),
    ...     ([1, 2, 3, 4, 5], [])])
    >>> metrics = RankingMetrics(predictionAndLabels)
    >>> metrics.precisionAt(1)
    0.33...
    >>> metrics.precisionAt(5)
    0.26...
    >>> metrics.precisionAt(15)
    0.17...
    >>> metrics.meanAveragePrecision
    0.35...
    >>> metrics.ndcgAt(3)
    0.33...
    >>> metrics.ndcgAt(10)
    0.48...

    .. versionadded:: 1.4.0
    """

    def __init__(self, predictionAndLabels):
        sc = predictionAndLabels.ctx
        sql_ctx = SQLContext.getOrCreate(sc)
        df = sql_ctx.createDataFrame(predictionAndLabels,
                                     schema=sql_ctx._inferSchema(predictionAndLabels))
        java_model = callMLlibFunc("newRankingMetrics", df._jdf)
        super(RankingMetrics, self).__init__(java_model)

    @since('1.4.0')
    def precisionAt(self, k):
        """
        Compute the average precision of all the queries, truncated at ranking position k.

        If for a query, the ranking algorithm returns n (n < k) results, the precision value
        will be computed as #(relevant items retrieved) / k. This formula also applies when
        the size of the ground truth set is less than k.

        If a query has an empty ground truth set, zero will be used as precision together
        with a log warning.
        """
        return self.call("precisionAt", int(k))

    @property
    @since('1.4.0')
    def meanAveragePrecision(self):
        """
        Returns the mean average precision (MAP) of all the queries.
        If a query has an empty ground truth set, the average precision will be zero and
        a log warining is generated.
        """
        return self.call("meanAveragePrecision")

    @since('1.4.0')
    def ndcgAt(self, k):
        """
        Compute the average NDCG value of all the queries, truncated at ranking position k.
        The discounted cumulative gain at position k is computed as:
        sum,,i=1,,^k^ (2^{relevance of ''i''th item}^ - 1) / log(i + 1),
        and the NDCG is obtained by dividing the DCG value on the ground truth set.
        In the current implementation, the relevance value is binary.
        If a query has an empty ground truth set, zero will be used as NDCG together with
        a log warning.
        """
        return self.call("ndcgAt", int(k))


class MultilabelMetrics(JavaModelWrapper):
    """
    Evaluator for multilabel classification.

    :param predictionAndLabels: an RDD of (predictions, labels) pairs,
                                both are non-null Arrays, each with
                                unique elements.

    >>> predictionAndLabels = sc.parallelize([([0.0, 1.0], [0.0, 2.0]), ([0.0, 2.0], [0.0, 1.0]),
    ...     ([], [0.0]), ([2.0], [2.0]), ([2.0, 0.0], [2.0, 0.0]),
    ...     ([0.0, 1.0, 2.0], [0.0, 1.0]), ([1.0], [1.0, 2.0])])
    >>> metrics = MultilabelMetrics(predictionAndLabels)
    >>> metrics.precision(0.0)
    1.0
    >>> metrics.recall(1.0)
    0.66...
    >>> metrics.f1Measure(2.0)
    0.5
    >>> metrics.precision()
    0.66...
    >>> metrics.recall()
    0.64...
    >>> metrics.f1Measure()
    0.63...
    >>> metrics.microPrecision
    0.72...
    >>> metrics.microRecall
    0.66...
    >>> metrics.microF1Measure
    0.69...
    >>> metrics.hammingLoss
    0.33...
    >>> metrics.subsetAccuracy
    0.28...
    >>> metrics.accuracy
    0.54...

    .. versionadded:: 1.4.0
    """

    def __init__(self, predictionAndLabels):
        sc = predictionAndLabels.ctx
        sql_ctx = SQLContext.getOrCreate(sc)
        df = sql_ctx.createDataFrame(predictionAndLabels,
                                     schema=sql_ctx._inferSchema(predictionAndLabels))
        java_class = sc._jvm.org.apache.spark.mllib.evaluation.MultilabelMetrics
        java_model = java_class(df._jdf)
        super(MultilabelMetrics, self).__init__(java_model)

    @since('1.4.0')
    def precision(self, label=None):
        """
        Returns precision or precision for a given label (category) if specified.
        """
        if label is None:
            return self.call("precision")
        else:
            return self.call("precision", float(label))

    @since('1.4.0')
    def recall(self, label=None):
        """
        Returns recall or recall for a given label (category) if specified.
        """
        if label is None:
            return self.call("recall")
        else:
            return self.call("recall", float(label))

    @since('1.4.0')
    def f1Measure(self, label=None):
        """
        Returns f1Measure or f1Measure for a given label (category) if specified.
        """
        if label is None:
            return self.call("f1Measure")
        else:
            return self.call("f1Measure", float(label))

    @property
    @since('1.4.0')
    def microPrecision(self):
        """
        Returns micro-averaged label-based precision.
        (equals to micro-averaged document-based precision)
        """
        return self.call("microPrecision")

    @property
    @since('1.4.0')
    def microRecall(self):
        """
        Returns micro-averaged label-based recall.
        (equals to micro-averaged document-based recall)
        """
        return self.call("microRecall")

    @property
    @since('1.4.0')
    def microF1Measure(self):
        """
        Returns micro-averaged label-based f1-measure.
        (equals to micro-averaged document-based f1-measure)
        """
        return self.call("microF1Measure")

    @property
    @since('1.4.0')
    def hammingLoss(self):
        """
        Returns Hamming-loss.
        """
        return self.call("hammingLoss")

    @property
    @since('1.4.0')
    def subsetAccuracy(self):
        """
        Returns subset accuracy.
        (for equal sets of labels)
        """
        return self.call("subsetAccuracy")

    @property
    @since('1.4.0')
    def accuracy(self):
        """
        Returns accuracy.
        """
        return self.call("accuracy")


def _test():
    import doctest
    from pyspark import SparkContext
    import pyspark.mllib.evaluation
    globs = pyspark.mllib.evaluation.__dict__.copy()
    globs['sc'] = SparkContext('local[4]', 'PythonTest')
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)


if __name__ == "__main__":
    _test()