aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/random.py
blob: 3f3b19053d32e4b5ba6486a39c05b9d14b023c1e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
Python package for random data generation.
"""


from pyspark.rdd import RDD
from pyspark.mllib._common import _deserialize_double, _deserialize_double_vector
from pyspark.serializers import NoOpSerializer


class RandomRDDs:
    """
    Generator methods for creating RDDs comprised of i.i.d samples from
    some distribution.
    """

    @staticmethod
    def uniformRDD(sc, size, numPartitions=None, seed=None):
        """
        Generates an RDD comprised of i.i.d. samples from the
        uniform distribution on [0.0, 1.0].

        To transform the distribution in the generated RDD from U[0.0, 1.0]
        to U[a, b], use
        C{RandomRDDs.uniformRDD(sc, n, p, seed)\
          .map(lambda v: a + (b - a) * v)}

        >>> x = RandomRDDs.uniformRDD(sc, 100).collect()
        >>> len(x)
        100
        >>> max(x) <= 1.0 and min(x) >= 0.0
        True
        >>> RandomRDDs.uniformRDD(sc, 100, 4).getNumPartitions()
        4
        >>> parts = RandomRDDs.uniformRDD(sc, 100, seed=4).getNumPartitions()
        >>> parts == sc.defaultParallelism
        True
        """
        jrdd = sc._jvm.PythonMLLibAPI().uniformRDD(sc._jsc, size, numPartitions, seed)
        uniform = RDD(jrdd, sc, NoOpSerializer())
        return uniform.map(lambda bytes: _deserialize_double(bytearray(bytes)))

    @staticmethod
    def normalRDD(sc, size, numPartitions=None, seed=None):
        """
        Generates an RDD comprised of i.i.d samples from the standard normal
        distribution.

        To transform the distribution in the generated RDD from standard normal
        to some other normal N(mean, sigma), use
        C{RandomRDDs.normal(sc, n, p, seed)\
          .map(lambda v: mean + sigma * v)}

        >>> x = RandomRDDs.normalRDD(sc, 1000, seed=1L)
        >>> stats = x.stats()
        >>> stats.count()
        1000L
        >>> abs(stats.mean() - 0.0) < 0.1
        True
        >>> abs(stats.stdev() - 1.0) < 0.1
        True
        """
        jrdd = sc._jvm.PythonMLLibAPI().normalRDD(sc._jsc, size, numPartitions, seed)
        normal = RDD(jrdd, sc, NoOpSerializer())
        return normal.map(lambda bytes: _deserialize_double(bytearray(bytes)))

    @staticmethod
    def poissonRDD(sc, mean, size, numPartitions=None, seed=None):
        """
        Generates an RDD comprised of i.i.d samples from the Poisson
        distribution with the input mean.

        >>> mean = 100.0
        >>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=1L)
        >>> stats = x.stats()
        >>> stats.count()
        1000L
        >>> abs(stats.mean() - mean) < 0.5
        True
        >>> from math import sqrt
        >>> abs(stats.stdev() - sqrt(mean)) < 0.5
        True
        """
        jrdd = sc._jvm.PythonMLLibAPI().poissonRDD(sc._jsc, mean, size, numPartitions, seed)
        poisson = RDD(jrdd, sc, NoOpSerializer())
        return poisson.map(lambda bytes: _deserialize_double(bytearray(bytes)))

    @staticmethod
    def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
        """
        Generates an RDD comprised of vectors containing i.i.d samples drawn
        from the uniform distribution on [0.0 1.0].

        >>> import numpy as np
        >>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect())
        >>> mat.shape
        (10, 10)
        >>> mat.max() <= 1.0 and mat.min() >= 0.0
        True
        >>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions()
        4
        """
        jrdd = sc._jvm.PythonMLLibAPI() \
            .uniformVectorRDD(sc._jsc, numRows, numCols, numPartitions, seed)
        uniform = RDD(jrdd, sc, NoOpSerializer())
        return uniform.map(lambda bytes: _deserialize_double_vector(bytearray(bytes)))

    @staticmethod
    def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
        """
        Generates an RDD comprised of vectors containing i.i.d samples drawn
        from the standard normal distribution.

        >>> import numpy as np
        >>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1L).collect())
        >>> mat.shape
        (100, 100)
        >>> abs(mat.mean() - 0.0) < 0.1
        True
        >>> abs(mat.std() - 1.0) < 0.1
        True
        """
        jrdd = sc._jvm.PythonMLLibAPI() \
            .normalVectorRDD(sc._jsc, numRows, numCols, numPartitions, seed)
        normal = RDD(jrdd, sc, NoOpSerializer())
        return normal.map(lambda bytes: _deserialize_double_vector(bytearray(bytes)))

    @staticmethod
    def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None):
        """
        Generates an RDD comprised of vectors containing i.i.d samples drawn
        from the Poisson distribution with the input mean.

        >>> import numpy as np
        >>> mean = 100.0
        >>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1L)
        >>> mat = np.mat(rdd.collect())
        >>> mat.shape
        (100, 100)
        >>> abs(mat.mean() - mean) < 0.5
        True
        >>> from math import sqrt
        >>> abs(mat.std() - sqrt(mean)) < 0.5
        True
        """
        jrdd = sc._jvm.PythonMLLibAPI() \
            .poissonVectorRDD(sc._jsc, mean, numRows, numCols, numPartitions, seed)
        poisson = RDD(jrdd, sc, NoOpSerializer())
        return poisson.map(lambda bytes: _deserialize_double_vector(bytearray(bytes)))


def _test():
    import doctest
    from pyspark.context import SparkContext
    globs = globals().copy()
    # The small batch size here ensures that we see multiple batches,
    # even in these small test examples:
    globs['sc'] = SparkContext('local[2]', 'PythonTest', batchSize=2)
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)


if __name__ == "__main__":
    _test()