aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/recommendation.py
blob: 7e60255d43eade63b2b0624c0f7260e6422d58e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import array
from collections import namedtuple

from pyspark import SparkContext, since
from pyspark.rdd import RDD
from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc, inherit_doc
from pyspark.mllib.util import JavaLoader, JavaSaveable
from pyspark.sql import DataFrame

__all__ = ['MatrixFactorizationModel', 'ALS', 'Rating']


class Rating(namedtuple("Rating", ["user", "product", "rating"])):
    """
    Represents a (user, product, rating) tuple.

    >>> r = Rating(1, 2, 5.0)
    >>> (r.user, r.product, r.rating)
    (1, 2, 5.0)
    >>> (r[0], r[1], r[2])
    (1, 2, 5.0)

    .. versionadded:: 1.2.0
    """

    def __reduce__(self):
        return Rating, (int(self.user), int(self.product), float(self.rating))


@inherit_doc
class MatrixFactorizationModel(JavaModelWrapper, JavaSaveable, JavaLoader):

    """A matrix factorisation model trained by regularized alternating
    least-squares.

    >>> r1 = (1, 1, 1.0)
    >>> r2 = (1, 2, 2.0)
    >>> r3 = (2, 1, 2.0)
    >>> ratings = sc.parallelize([r1, r2, r3])
    >>> model = ALS.trainImplicit(ratings, 1, seed=10)
    >>> model.predict(2, 2)
    0.4...

    >>> testset = sc.parallelize([(1, 2), (1, 1)])
    >>> model = ALS.train(ratings, 2, seed=0)
    >>> model.predictAll(testset).collect()
    [Rating(user=1, product=1, rating=1.0...), Rating(user=1, product=2, rating=1.9...)]

    >>> model = ALS.train(ratings, 4, seed=10)
    >>> model.userFeatures().collect()
    [(1, array('d', [...])), (2, array('d', [...]))]

    >>> model.recommendUsers(1, 2)
    [Rating(user=2, product=1, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]
    >>> model.recommendProducts(1, 2)
    [Rating(user=1, product=2, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]
    >>> model.rank
    4

    >>> first_user = model.userFeatures().take(1)[0]
    >>> latents = first_user[1]
    >>> len(latents)
    4

    >>> model.productFeatures().collect()
    [(1, array('d', [...])), (2, array('d', [...]))]

    >>> first_product = model.productFeatures().take(1)[0]
    >>> latents = first_product[1]
    >>> len(latents)
    4

    >>> products_for_users = model.recommendProductsForUsers(1).collect()
    >>> len(products_for_users)
    2
    >>> products_for_users[0]
    (1, (Rating(user=1, product=2, rating=...),))

    >>> users_for_products = model.recommendUsersForProducts(1).collect()
    >>> len(users_for_products)
    2
    >>> users_for_products[0]
    (1, (Rating(user=2, product=1, rating=...),))

    >>> model = ALS.train(ratings, 1, nonnegative=True, seed=10)
    >>> model.predict(2, 2)
    3.73...

    >>> df = sqlContext.createDataFrame([Rating(1, 1, 1.0), Rating(1, 2, 2.0), Rating(2, 1, 2.0)])
    >>> model = ALS.train(df, 1, nonnegative=True, seed=10)
    >>> model.predict(2, 2)
    3.73...

    >>> model = ALS.trainImplicit(ratings, 1, nonnegative=True, seed=10)
    >>> model.predict(2, 2)
    0.4...

    >>> import os, tempfile
    >>> path = tempfile.mkdtemp()
    >>> model.save(sc, path)
    >>> sameModel = MatrixFactorizationModel.load(sc, path)
    >>> sameModel.predict(2, 2)
    0.4...
    >>> sameModel.predictAll(testset).collect()
    [Rating(...
    >>> from shutil import rmtree
    >>> try:
    ...     rmtree(path)
    ... except OSError:
    ...     pass

    .. versionadded:: 0.9.0
    """
    @since("0.9.0")
    def predict(self, user, product):
        """
        Predicts rating for the given user and product.
        """
        return self._java_model.predict(int(user), int(product))

    @since("0.9.0")
    def predictAll(self, user_product):
        """
        Returns a list of predicted ratings for input user and product
        pairs.
        """
        assert isinstance(user_product, RDD), "user_product should be RDD of (user, product)"
        first = user_product.first()
        assert len(first) == 2, "user_product should be RDD of (user, product)"
        user_product = user_product.map(lambda u_p: (int(u_p[0]), int(u_p[1])))
        return self.call("predict", user_product)

    @since("1.2.0")
    def userFeatures(self):
        """
        Returns a paired RDD, where the first element is the user and the
        second is an array of features corresponding to that user.
        """
        return self.call("getUserFeatures").mapValues(lambda v: array.array('d', v))

    @since("1.2.0")
    def productFeatures(self):
        """
        Returns a paired RDD, where the first element is the product and the
        second is an array of features corresponding to that product.
        """
        return self.call("getProductFeatures").mapValues(lambda v: array.array('d', v))

    @since("1.4.0")
    def recommendUsers(self, product, num):
        """
        Recommends the top "num" number of users for a given product and
        returns a list of Rating objects sorted by the predicted rating in
        descending order.
        """
        return list(self.call("recommendUsers", product, num))

    @since("1.4.0")
    def recommendProducts(self, user, num):
        """
        Recommends the top "num" number of products for a given user and
        returns a list of Rating objects sorted by the predicted rating in
        descending order.
        """
        return list(self.call("recommendProducts", user, num))

    def recommendProductsForUsers(self, num):
        """
        Recommends the top "num" number of products for all users. The
        number of recommendations returned per user may be less than "num".
        """
        return self.call("wrappedRecommendProductsForUsers", num)

    def recommendUsersForProducts(self, num):
        """
        Recommends the top "num" number of users for all products. The
        number of recommendations returned per product may be less than
        "num".
        """
        return self.call("wrappedRecommendUsersForProducts", num)

    @property
    @since("1.4.0")
    def rank(self):
        """Rank for the features in this model"""
        return self.call("rank")

    @classmethod
    @since("1.3.1")
    def load(cls, sc, path):
        """Load a model from the given path"""
        model = cls._load_java(sc, path)
        wrapper = sc._jvm.MatrixFactorizationModelWrapper(model)
        return MatrixFactorizationModel(wrapper)


class ALS(object):
    """Alternating Least Squares matrix factorization

    .. versionadded:: 0.9.0
    """

    @classmethod
    def _prepare(cls, ratings):
        if isinstance(ratings, RDD):
            pass
        elif isinstance(ratings, DataFrame):
            ratings = ratings.rdd
        else:
            raise TypeError("Ratings should be represented by either an RDD or a DataFrame, "
                            "but got %s." % type(ratings))
        first = ratings.first()
        if isinstance(first, Rating):
            pass
        elif isinstance(first, (tuple, list)):
            ratings = ratings.map(lambda x: Rating(*x))
        else:
            raise TypeError("Expect a Rating or a tuple/list, but got %s." % type(first))
        return ratings

    @classmethod
    @since("0.9.0")
    def train(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, nonnegative=False,
              seed=None):
        """
        Train a matrix factorization model given an RDD of ratings by users
        for a subset of products. The ratings matrix is approximated as the
        product of two lower-rank matrices of a given rank (number of
        features). To solve for these features, ALS is run iteratively with
        a configurable level of parallelism.

        :param ratings:
          RDD of `Rating` or (userID, productID, rating) tuple.
        :param rank:
          Rank of the feature matrices computed (number of features).
        :param iterations:
          Number of iterations of ALS.
          (default: 5)
        :param lambda_:
          Regularization parameter.
          (default: 0.01)
        :param blocks:
          Number of blocks used to parallelize the computation. A value
          of -1 will use an auto-configured number of blocks.
          (default: -1)
        :param nonnegative:
          A value of True will solve least-squares with nonnegativity
          constraints.
          (default: False)
        :param seed:
          Random seed for initial matrix factorization model. A value
          of None will use system time as the seed.
          (default: None)
        """
        model = callMLlibFunc("trainALSModel", cls._prepare(ratings), rank, iterations,
                              lambda_, blocks, nonnegative, seed)
        return MatrixFactorizationModel(model)

    @classmethod
    @since("0.9.0")
    def trainImplicit(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01,
                      nonnegative=False, seed=None):
        """
        Train a matrix factorization model given an RDD of 'implicit
        preferences' of users for a subset of products. The ratings matrix
        is approximated as the product of two lower-rank matrices of a
        given rank (number of features). To solve for these features, ALS
        is run iteratively with a configurable level of parallelism.

        :param ratings:
          RDD of `Rating` or (userID, productID, rating) tuple.
        :param rank:
          Rank of the feature matrices computed (number of features).
        :param iterations:
          Number of iterations of ALS.
          (default: 5)
        :param lambda_:
          Regularization parameter.
          (default: 0.01)
        :param blocks:
          Number of blocks used to parallelize the computation. A value
          of -1 will use an auto-configured number of blocks.
          (default: -1)
        :param alpha:
          A constant used in computing confidence.
          (default: 0.01)
        :param nonnegative:
          A value of True will solve least-squares with nonnegativity
          constraints.
          (default: False)
        :param seed:
          Random seed for initial matrix factorization model. A value
          of None will use system time as the seed.
          (default: None)
        """
        model = callMLlibFunc("trainImplicitALSModel", cls._prepare(ratings), rank,
                              iterations, lambda_, blocks, alpha, nonnegative, seed)
        return MatrixFactorizationModel(model)


def _test():
    import doctest
    import pyspark.mllib.recommendation
    from pyspark.sql import SQLContext
    globs = pyspark.mllib.recommendation.__dict__.copy()
    sc = SparkContext('local[4]', 'PythonTest')
    globs['sc'] = sc
    globs['sqlContext'] = SQLContext(sc)
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)


if __name__ == "__main__":
    _test()