aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/recommendation.py
blob: b9442b0d16c0fd34bf2d02cc894073a548330de5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import array
from collections import namedtuple

from pyspark import SparkContext, since
from pyspark.rdd import RDD
from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc, inherit_doc
from pyspark.mllib.util import JavaLoader, JavaSaveable
from pyspark.sql import DataFrame

__all__ = ['MatrixFactorizationModel', 'ALS', 'Rating']


class Rating(namedtuple("Rating", ["user", "product", "rating"])):
    """
    Represents a (user, product, rating) tuple.

    >>> r = Rating(1, 2, 5.0)
    >>> (r.user, r.product, r.rating)
    (1, 2, 5.0)
    >>> (r[0], r[1], r[2])
    (1, 2, 5.0)

    .. versionadded:: 1.2.0
    """

    def __reduce__(self):
        return Rating, (int(self.user), int(self.product), float(self.rating))


@inherit_doc
class MatrixFactorizationModel(JavaModelWrapper, JavaSaveable, JavaLoader):

    """A matrix factorisation model trained by regularized alternating
    least-squares.

    >>> r1 = (1, 1, 1.0)
    >>> r2 = (1, 2, 2.0)
    >>> r3 = (2, 1, 2.0)
    >>> ratings = sc.parallelize([r1, r2, r3])
    >>> model = ALS.trainImplicit(ratings, 1, seed=10)
    >>> model.predict(2, 2)
    0.4...

    >>> testset = sc.parallelize([(1, 2), (1, 1)])
    >>> model = ALS.train(ratings, 2, seed=0)
    >>> model.predictAll(testset).collect()
    [Rating(user=1, product=1, rating=1.0...), Rating(user=1, product=2, rating=1.9...)]

    >>> model = ALS.train(ratings, 4, seed=10)
    >>> model.userFeatures().collect()
    [(1, array('d', [...])), (2, array('d', [...]))]

    >>> model.recommendUsers(1, 2)
    [Rating(user=2, product=1, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]
    >>> model.recommendProducts(1, 2)
    [Rating(user=1, product=2, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]
    >>> model.rank
    4

    >>> first_user = model.userFeatures().take(1)[0]
    >>> latents = first_user[1]
    >>> len(latents)
    4

    >>> model.productFeatures().collect()
    [(1, array('d', [...])), (2, array('d', [...]))]

    >>> first_product = model.productFeatures().take(1)[0]
    >>> latents = first_product[1]
    >>> len(latents)
    4

    >>> products_for_users = model.recommendProductsForUsers(1).collect()
    >>> len(products_for_users)
    2
    >>> products_for_users[0]
    (1, (Rating(user=1, product=2, rating=...),))

    >>> users_for_products = model.recommendUsersForProducts(1).collect()
    >>> len(users_for_products)
    2
    >>> users_for_products[0]
    (1, (Rating(user=2, product=1, rating=...),))

    >>> model = ALS.train(ratings, 1, nonnegative=True, seed=10)
    >>> model.predict(2, 2)
    3.8...

    >>> df = sqlContext.createDataFrame([Rating(1, 1, 1.0), Rating(1, 2, 2.0), Rating(2, 1, 2.0)])
    >>> model = ALS.train(df, 1, nonnegative=True, seed=10)
    >>> model.predict(2, 2)
    3.8...

    >>> model = ALS.trainImplicit(ratings, 1, nonnegative=True, seed=10)
    >>> model.predict(2, 2)
    0.4...

    >>> import os, tempfile
    >>> path = tempfile.mkdtemp()
    >>> model.save(sc, path)
    >>> sameModel = MatrixFactorizationModel.load(sc, path)
    >>> sameModel.predict(2, 2)
    0.4...
    >>> sameModel.predictAll(testset).collect()
    [Rating(...
    >>> from shutil import rmtree
    >>> try:
    ...     rmtree(path)
    ... except OSError:
    ...     pass

    .. versionadded:: 0.9.0
    """
    @since("0.9.0")
    def predict(self, user, product):
        """
        Predicts rating for the given user and product.
        """
        return self._java_model.predict(int(user), int(product))

    @since("0.9.0")
    def predictAll(self, user_product):
        """
        Returns a list of predicted ratings for input user and product pairs.
        """
        assert isinstance(user_product, RDD), "user_product should be RDD of (user, product)"
        first = user_product.first()
        assert len(first) == 2, "user_product should be RDD of (user, product)"
        user_product = user_product.map(lambda u_p: (int(u_p[0]), int(u_p[1])))
        return self.call("predict", user_product)

    @since("1.2.0")
    def userFeatures(self):
        """
        Returns a paired RDD, where the first element is the user and the
        second is an array of features corresponding to that user.
        """
        return self.call("getUserFeatures").mapValues(lambda v: array.array('d', v))

    @since("1.2.0")
    def productFeatures(self):
        """
        Returns a paired RDD, where the first element is the product and the
        second is an array of features corresponding to that product.
        """
        return self.call("getProductFeatures").mapValues(lambda v: array.array('d', v))

    @since("1.4.0")
    def recommendUsers(self, product, num):
        """
        Recommends the top "num" number of users for a given product and returns a list
        of Rating objects sorted by the predicted rating in descending order.
        """
        return list(self.call("recommendUsers", product, num))

    @since("1.4.0")
    def recommendProducts(self, user, num):
        """
        Recommends the top "num" number of products for a given user and returns a list
        of Rating objects sorted by the predicted rating in descending order.
        """
        return list(self.call("recommendProducts", user, num))

    def recommendProductsForUsers(self, num):
        """
        Recommends top "num" products for all users. The number returned may be less than this.
        """
        return self.call("wrappedRecommendProductsForUsers", num)

    def recommendUsersForProducts(self, num):
        """
        Recommends top "num" users for all products. The number returned may be less than this.
        """
        return self.call("wrappedRecommendUsersForProducts", num)

    @property
    @since("1.4.0")
    def rank(self):
        """Rank for the features in this model"""
        return self.call("rank")

    @classmethod
    @since("1.3.1")
    def load(cls, sc, path):
        """Load a model from the given path"""
        model = cls._load_java(sc, path)
        wrapper = sc._jvm.MatrixFactorizationModelWrapper(model)
        return MatrixFactorizationModel(wrapper)


class ALS(object):
    """Alternating Least Squares matrix factorization

    .. versionadded:: 0.9.0
    """

    @classmethod
    def _prepare(cls, ratings):
        if isinstance(ratings, RDD):
            pass
        elif isinstance(ratings, DataFrame):
            ratings = ratings.rdd
        else:
            raise TypeError("Ratings should be represented by either an RDD or a DataFrame, "
                            "but got %s." % type(ratings))
        first = ratings.first()
        if isinstance(first, Rating):
            pass
        elif isinstance(first, (tuple, list)):
            ratings = ratings.map(lambda x: Rating(*x))
        else:
            raise TypeError("Expect a Rating or a tuple/list, but got %s." % type(first))
        return ratings

    @classmethod
    @since("0.9.0")
    def train(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, nonnegative=False,
              seed=None):
        """
        Train a matrix factorization model given an RDD of ratings given by users to some products,
        in the form of (userID, productID, rating) pairs. We approximate the ratings matrix as the
        product of two lower-rank matrices of a given rank (number of features). To solve for these
        features, we run a given number of iterations of ALS. This is done using a level of
        parallelism given by `blocks`.
        """
        model = callMLlibFunc("trainALSModel", cls._prepare(ratings), rank, iterations,
                              lambda_, blocks, nonnegative, seed)
        return MatrixFactorizationModel(model)

    @classmethod
    @since("0.9.0")
    def trainImplicit(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01,
                      nonnegative=False, seed=None):
        """
        Train a matrix factorization model given an RDD of 'implicit preferences' given by users
        to some products, in the form of (userID, productID, preference) pairs. We approximate the
        ratings matrix as the product of two lower-rank matrices of a given rank (number of
        features).  To solve for these features, we run a given number of iterations of ALS.
        This is done using a level of parallelism given by `blocks`.
        """
        model = callMLlibFunc("trainImplicitALSModel", cls._prepare(ratings), rank,
                              iterations, lambda_, blocks, alpha, nonnegative, seed)
        return MatrixFactorizationModel(model)


def _test():
    import doctest
    import pyspark.mllib.recommendation
    from pyspark.sql import SQLContext
    globs = pyspark.mllib.recommendation.__dict__.copy()
    sc = SparkContext('local[4]', 'PythonTest')
    globs['sc'] = sc
    globs['sqlContext'] = SQLContext(sc)
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)


if __name__ == "__main__":
    _test()