aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/shuffle.py
blob: e974cda9fc3e167d5babfeb85ff4840abdb57e8b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import platform
import shutil
import warnings
import gc
import itertools
import operator
import random

import pyspark.heapq3 as heapq
from pyspark.serializers import BatchedSerializer, PickleSerializer, FlattenedValuesSerializer, \
    CompressedSerializer, AutoBatchedSerializer


try:
    import psutil

    process = None

    def get_used_memory():
        """ Return the used memory in MB """
        global process
        if process is None or process._pid != os.getpid():
            process = psutil.Process(os.getpid())
        if hasattr(process, "memory_info"):
            info = process.memory_info()
        else:
            info = process.get_memory_info()
        return info.rss >> 20

except ImportError:

    def get_used_memory():
        """ Return the used memory in MB """
        if platform.system() == 'Linux':
            for line in open('/proc/self/status'):
                if line.startswith('VmRSS:'):
                    return int(line.split()[1]) >> 10

        else:
            warnings.warn("Please install psutil to have better "
                          "support with spilling")
            if platform.system() == "Darwin":
                import resource
                rss = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
                return rss >> 20
            # TODO: support windows

        return 0


def _get_local_dirs(sub):
    """ Get all the directories """
    path = os.environ.get("SPARK_LOCAL_DIRS", "/tmp")
    dirs = path.split(",")
    if len(dirs) > 1:
        # different order in different processes and instances
        rnd = random.Random(os.getpid() + id(dirs))
        random.shuffle(dirs, rnd.random)
    return [os.path.join(d, "python", str(os.getpid()), sub) for d in dirs]


# global stats
MemoryBytesSpilled = 0
DiskBytesSpilled = 0


class Aggregator(object):

    """
    Aggregator has tree functions to merge values into combiner.

    createCombiner:  (value) -> combiner
    mergeValue:      (combine, value) -> combiner
    mergeCombiners:  (combiner, combiner) -> combiner
    """

    def __init__(self, createCombiner, mergeValue, mergeCombiners):
        self.createCombiner = createCombiner
        self.mergeValue = mergeValue
        self.mergeCombiners = mergeCombiners


class SimpleAggregator(Aggregator):

    """
    SimpleAggregator is useful for the cases that combiners have
    same type with values
    """

    def __init__(self, combiner):
        Aggregator.__init__(self, lambda x: x, combiner, combiner)


class Merger(object):

    """
    Merge shuffled data together by aggregator
    """

    def __init__(self, aggregator):
        self.agg = aggregator

    def mergeValues(self, iterator):
        """ Combine the items by creator and combiner """
        raise NotImplementedError

    def mergeCombiners(self, iterator):
        """ Merge the combined items by mergeCombiner """
        raise NotImplementedError

    def items(self):
        """ Return the merged items ad iterator """
        raise NotImplementedError


def _compressed_serializer(self, serializer=None):
    # always use PickleSerializer to simplify implementation
    ser = PickleSerializer()
    return AutoBatchedSerializer(CompressedSerializer(ser))


class ExternalMerger(Merger):

    """
    External merger will dump the aggregated data into disks when
    memory usage goes above the limit, then merge them together.

    This class works as follows:

    - It repeatedly combine the items and save them in one dict in
      memory.

    - When the used memory goes above memory limit, it will split
      the combined data into partitions by hash code, dump them
      into disk, one file per partition.

    - Then it goes through the rest of the iterator, combine items
      into different dict by hash. Until the used memory goes over
      memory limit, it dump all the dicts into disks, one file per
      dict. Repeat this again until combine all the items.

    - Before return any items, it will load each partition and
      combine them separately. Yield them before loading next
      partition.

    - During loading a partition, if the memory goes over limit,
      it will partition the loaded data and dump them into disks
      and load them partition by partition again.

    `data` and `pdata` are used to hold the merged items in memory.
    At first, all the data are merged into `data`. Once the used
    memory goes over limit, the items in `data` are dumped into
    disks, `data` will be cleared, all rest of items will be merged
    into `pdata` and then dumped into disks. Before returning, all
    the items in `pdata` will be dumped into disks.

    Finally, if any items were spilled into disks, each partition
    will be merged into `data` and be yielded, then cleared.

    >>> agg = SimpleAggregator(lambda x, y: x + y)
    >>> merger = ExternalMerger(agg, 10)
    >>> N = 10000
    >>> merger.mergeValues(zip(range(N), range(N)))
    >>> assert merger.spills > 0
    >>> sum(v for k,v in merger.items())
    49995000

    >>> merger = ExternalMerger(agg, 10)
    >>> merger.mergeCombiners(zip(range(N), range(N)))
    >>> assert merger.spills > 0
    >>> sum(v for k,v in merger.items())
    49995000
    """

    # the max total partitions created recursively
    MAX_TOTAL_PARTITIONS = 4096

    def __init__(self, aggregator, memory_limit=512, serializer=None,
                 localdirs=None, scale=1, partitions=59, batch=1000):
        Merger.__init__(self, aggregator)
        self.memory_limit = memory_limit
        self.serializer = _compressed_serializer(serializer)
        self.localdirs = localdirs or _get_local_dirs(str(id(self)))
        # number of partitions when spill data into disks
        self.partitions = partitions
        # check the memory after # of items merged
        self.batch = batch
        # scale is used to scale down the hash of key for recursive hash map
        self.scale = scale
        # un-partitioned merged data
        self.data = {}
        # partitioned merged data, list of dicts
        self.pdata = []
        # number of chunks dumped into disks
        self.spills = 0
        # randomize the hash of key, id(o) is the address of o (aligned by 8)
        self._seed = id(self) + 7

    def _get_spill_dir(self, n):
        """ Choose one directory for spill by number n """
        return os.path.join(self.localdirs[n % len(self.localdirs)], str(n))

    def _next_limit(self):
        """
        Return the next memory limit. If the memory is not released
        after spilling, it will dump the data only when the used memory
        starts to increase.
        """
        return max(self.memory_limit, get_used_memory() * 1.05)

    def mergeValues(self, iterator):
        """ Combine the items by creator and combiner """
        # speedup attribute lookup
        creator, comb = self.agg.createCombiner, self.agg.mergeValue
        c, data, pdata, hfun, batch = 0, self.data, self.pdata, self._partition, self.batch
        limit = self.memory_limit

        for k, v in iterator:
            d = pdata[hfun(k)] if pdata else data
            d[k] = comb(d[k], v) if k in d else creator(v)

            c += 1
            if c >= batch:
                if get_used_memory() >= limit:
                    self._spill()
                    limit = self._next_limit()
                    batch /= 2
                    c = 0
                else:
                    batch *= 1.5

        if get_used_memory() >= limit:
            self._spill()

    def _partition(self, key):
        """ Return the partition for key """
        return hash((key, self._seed)) % self.partitions

    def _object_size(self, obj):
        """ How much of memory for this obj, assume that all the objects
        consume similar bytes of memory
        """
        return 1

    def mergeCombiners(self, iterator, limit=None):
        """ Merge (K,V) pair by mergeCombiner """
        if limit is None:
            limit = self.memory_limit
        # speedup attribute lookup
        comb, hfun, objsize = self.agg.mergeCombiners, self._partition, self._object_size
        c, data, pdata, batch = 0, self.data, self.pdata, self.batch
        for k, v in iterator:
            d = pdata[hfun(k)] if pdata else data
            d[k] = comb(d[k], v) if k in d else v
            if not limit:
                continue

            c += objsize(v)
            if c > batch:
                if get_used_memory() > limit:
                    self._spill()
                    limit = self._next_limit()
                    batch /= 2
                    c = 0
                else:
                    batch *= 1.5

        if limit and get_used_memory() >= limit:
            self._spill()

    def _spill(self):
        """
        dump already partitioned data into disks.

        It will dump the data in batch for better performance.
        """
        global MemoryBytesSpilled, DiskBytesSpilled
        path = self._get_spill_dir(self.spills)
        if not os.path.exists(path):
            os.makedirs(path)

        used_memory = get_used_memory()
        if not self.pdata:
            # The data has not been partitioned, it will iterator the
            # dataset once, write them into different files, has no
            # additional memory. It only called when the memory goes
            # above limit at the first time.

            # open all the files for writing
            streams = [open(os.path.join(path, str(i)), 'wb')
                       for i in range(self.partitions)]

            for k, v in self.data.items():
                h = self._partition(k)
                # put one item in batch, make it compatible with load_stream
                # it will increase the memory if dump them in batch
                self.serializer.dump_stream([(k, v)], streams[h])

            for s in streams:
                DiskBytesSpilled += s.tell()
                s.close()

            self.data.clear()
            self.pdata.extend([{} for i in range(self.partitions)])

        else:
            for i in range(self.partitions):
                p = os.path.join(path, str(i))
                with open(p, "wb") as f:
                    # dump items in batch
                    self.serializer.dump_stream(iter(self.pdata[i].items()), f)
                self.pdata[i].clear()
                DiskBytesSpilled += os.path.getsize(p)

        self.spills += 1
        gc.collect()  # release the memory as much as possible
        MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20

    def items(self):
        """ Return all merged items as iterator """
        if not self.pdata and not self.spills:
            return iter(self.data.items())
        return self._external_items()

    def _external_items(self):
        """ Return all partitioned items as iterator """
        assert not self.data
        if any(self.pdata):
            self._spill()
        # disable partitioning and spilling when merge combiners from disk
        self.pdata = []

        try:
            for i in range(self.partitions):
                for v in self._merged_items(i):
                    yield v
                self.data.clear()

                # remove the merged partition
                for j in range(self.spills):
                    path = self._get_spill_dir(j)
                    os.remove(os.path.join(path, str(i)))
        finally:
            self._cleanup()

    def _merged_items(self, index):
        self.data = {}
        limit = self._next_limit()
        for j in range(self.spills):
            path = self._get_spill_dir(j)
            p = os.path.join(path, str(index))
            # do not check memory during merging
            with open(p, "rb") as f:
                self.mergeCombiners(self.serializer.load_stream(f), 0)

            # limit the total partitions
            if (self.scale * self.partitions < self.MAX_TOTAL_PARTITIONS
                    and j < self.spills - 1
                    and get_used_memory() > limit):
                self.data.clear()  # will read from disk again
                gc.collect()  # release the memory as much as possible
                return self._recursive_merged_items(index)

        return self.data.items()

    def _recursive_merged_items(self, index):
        """
        merge the partitioned items and return the as iterator

        If one partition can not be fit in memory, then them will be
        partitioned and merged recursively.
        """
        subdirs = [os.path.join(d, "parts", str(index)) for d in self.localdirs]
        m = ExternalMerger(self.agg, self.memory_limit, self.serializer, subdirs,
                           self.scale * self.partitions, self.partitions, self.batch)
        m.pdata = [{} for _ in range(self.partitions)]
        limit = self._next_limit()

        for j in range(self.spills):
            path = self._get_spill_dir(j)
            p = os.path.join(path, str(index))
            with open(p, 'rb') as f:
                m.mergeCombiners(self.serializer.load_stream(f), 0)

            if get_used_memory() > limit:
                m._spill()
                limit = self._next_limit()

        return m._external_items()

    def _cleanup(self):
        """ Clean up all the files in disks """
        for d in self.localdirs:
            shutil.rmtree(d, True)


class ExternalSorter(object):
    """
    ExtenalSorter will divide the elements into chunks, sort them in
    memory and dump them into disks, finally merge them back.

    The spilling will only happen when the used memory goes above
    the limit.


    >>> sorter = ExternalSorter(1)  # 1M
    >>> import random
    >>> l = list(range(1024))
    >>> random.shuffle(l)
    >>> sorted(l) == list(sorter.sorted(l))
    True
    >>> sorted(l) == list(sorter.sorted(l, key=lambda x: -x, reverse=True))
    True
    """
    def __init__(self, memory_limit, serializer=None):
        self.memory_limit = memory_limit
        self.local_dirs = _get_local_dirs("sort")
        self.serializer = _compressed_serializer(serializer)

    def _get_path(self, n):
        """ Choose one directory for spill by number n """
        d = self.local_dirs[n % len(self.local_dirs)]
        if not os.path.exists(d):
            os.makedirs(d)
        return os.path.join(d, str(n))

    def _next_limit(self):
        """
        Return the next memory limit. If the memory is not released
        after spilling, it will dump the data only when the used memory
        starts to increase.
        """
        return max(self.memory_limit, get_used_memory() * 1.05)

    def sorted(self, iterator, key=None, reverse=False):
        """
        Sort the elements in iterator, do external sort when the memory
        goes above the limit.
        """
        global MemoryBytesSpilled, DiskBytesSpilled
        batch, limit = 100, self._next_limit()
        chunks, current_chunk = [], []
        iterator = iter(iterator)
        while True:
            # pick elements in batch
            chunk = list(itertools.islice(iterator, batch))
            current_chunk.extend(chunk)
            if len(chunk) < batch:
                break

            used_memory = get_used_memory()
            if used_memory > limit:
                # sort them inplace will save memory
                current_chunk.sort(key=key, reverse=reverse)
                path = self._get_path(len(chunks))
                with open(path, 'wb') as f:
                    self.serializer.dump_stream(current_chunk, f)

                def load(f):
                    for v in self.serializer.load_stream(f):
                        yield v
                    # close the file explicit once we consume all the items
                    # to avoid ResourceWarning in Python3
                    f.close()
                chunks.append(load(open(path, 'rb')))
                current_chunk = []
                MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20
                DiskBytesSpilled += os.path.getsize(path)
                os.unlink(path)  # data will be deleted after close

            elif not chunks:
                batch = min(int(batch * 1.5), 10000)

        current_chunk.sort(key=key, reverse=reverse)
        if not chunks:
            return current_chunk

        if current_chunk:
            chunks.append(iter(current_chunk))

        return heapq.merge(chunks, key=key, reverse=reverse)


class ExternalList(object):
    """
    ExternalList can have many items which cannot be hold in memory in
    the same time.

    >>> l = ExternalList(list(range(100)))
    >>> len(l)
    100
    >>> l.append(10)
    >>> len(l)
    101
    >>> for i in range(20240):
    ...     l.append(i)
    >>> len(l)
    20341
    >>> import pickle
    >>> l2 = pickle.loads(pickle.dumps(l))
    >>> len(l2)
    20341
    >>> list(l2)[100]
    10
    """
    LIMIT = 10240

    def __init__(self, values):
        self.values = values
        self.count = len(values)
        self._file = None
        self._ser = None

    def __getstate__(self):
        if self._file is not None:
            self._file.flush()
            with os.fdopen(os.dup(self._file.fileno()), "rb") as f:
                f.seek(0)
                serialized = f.read()
        else:
            serialized = b''
        return self.values, self.count, serialized

    def __setstate__(self, item):
        self.values, self.count, serialized = item
        if serialized:
            self._open_file()
            self._file.write(serialized)
        else:
            self._file = None
            self._ser = None

    def __iter__(self):
        if self._file is not None:
            self._file.flush()
            # read all items from disks first
            with os.fdopen(os.dup(self._file.fileno()), 'rb') as f:
                f.seek(0)
                for v in self._ser.load_stream(f):
                    yield v

        for v in self.values:
            yield v

    def __len__(self):
        return self.count

    def append(self, value):
        self.values.append(value)
        self.count += 1
        # dump them into disk if the key is huge
        if len(self.values) >= self.LIMIT:
            self._spill()

    def _open_file(self):
        dirs = _get_local_dirs("objects")
        d = dirs[id(self) % len(dirs)]
        if not os.path.exists(d):
            os.makedirs(d)
        p = os.path.join(d, str(id(self)))
        self._file = open(p, "w+b", 65536)
        self._ser = BatchedSerializer(CompressedSerializer(PickleSerializer()), 1024)
        os.unlink(p)

    def __del__(self):
        if self._file:
            self._file.close()
            self._file = None

    def _spill(self):
        """ dump the values into disk """
        global MemoryBytesSpilled, DiskBytesSpilled
        if self._file is None:
            self._open_file()

        used_memory = get_used_memory()
        pos = self._file.tell()
        self._ser.dump_stream(self.values, self._file)
        self.values = []
        gc.collect()
        DiskBytesSpilled += self._file.tell() - pos
        MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20


class ExternalListOfList(ExternalList):
    """
    An external list for list.

    >>> l = ExternalListOfList([[i, i] for i in range(100)])
    >>> len(l)
    200
    >>> l.append(range(10))
    >>> len(l)
    210
    >>> len(list(l))
    210
    """

    def __init__(self, values):
        ExternalList.__init__(self, values)
        self.count = sum(len(i) for i in values)

    def append(self, value):
        ExternalList.append(self, value)
        # already counted 1 in ExternalList.append
        self.count += len(value) - 1

    def __iter__(self):
        for values in ExternalList.__iter__(self):
            for v in values:
                yield v


class GroupByKey(object):
    """
    Group a sorted iterator as [(k1, it1), (k2, it2), ...]

    >>> k = [i // 3 for i in range(6)]
    >>> v = [[i] for i in range(6)]
    >>> g = GroupByKey(zip(k, v))
    >>> [(k, list(it)) for k, it in g]
    [(0, [0, 1, 2]), (1, [3, 4, 5])]
    """

    def __init__(self, iterator):
        self.iterator = iterator

    def __iter__(self):
        key, values = None, None
        for k, v in self.iterator:
            if values is not None and k == key:
                values.append(v)
            else:
                if values is not None:
                    yield (key, values)
                key = k
                values = ExternalListOfList([v])
        if values is not None:
            yield (key, values)


class ExternalGroupBy(ExternalMerger):

    """
    Group by the items by key. If any partition of them can not been
    hold in memory, it will do sort based group by.

    This class works as follows:

    - It repeatedly group the items by key and save them in one dict in
      memory.

    - When the used memory goes above memory limit, it will split
      the combined data into partitions by hash code, dump them
      into disk, one file per partition. If the number of keys
      in one partitions is smaller than 1000, it will sort them
      by key before dumping into disk.

    - Then it goes through the rest of the iterator, group items
      by key into different dict by hash. Until the used memory goes over
      memory limit, it dump all the dicts into disks, one file per
      dict. Repeat this again until combine all the items. It
      also will try to sort the items by key in each partition
      before dumping into disks.

    - It will yield the grouped items partitions by partitions.
      If the data in one partitions can be hold in memory, then it
      will load and combine them in memory and yield.

    - If the dataset in one partition cannot be hold in memory,
      it will sort them first. If all the files are already sorted,
      it merge them by heap.merge(), so it will do external sort
      for all the files.

    - After sorting, `GroupByKey` class will put all the continuous
      items with the same key as a group, yield the values as
      an iterator.
    """
    SORT_KEY_LIMIT = 1000

    def flattened_serializer(self):
        assert isinstance(self.serializer, BatchedSerializer)
        ser = self.serializer
        return FlattenedValuesSerializer(ser, 20)

    def _object_size(self, obj):
        return len(obj)

    def _spill(self):
        """
        dump already partitioned data into disks.
        """
        global MemoryBytesSpilled, DiskBytesSpilled
        path = self._get_spill_dir(self.spills)
        if not os.path.exists(path):
            os.makedirs(path)

        used_memory = get_used_memory()
        if not self.pdata:
            # The data has not been partitioned, it will iterator the
            # data once, write them into different files, has no
            # additional memory. It only called when the memory goes
            # above limit at the first time.

            # open all the files for writing
            streams = [open(os.path.join(path, str(i)), 'wb')
                       for i in range(self.partitions)]

            # If the number of keys is small, then the overhead of sort is small
            # sort them before dumping into disks
            self._sorted = len(self.data) < self.SORT_KEY_LIMIT
            if self._sorted:
                self.serializer = self.flattened_serializer()
                for k in sorted(self.data.keys()):
                    h = self._partition(k)
                    self.serializer.dump_stream([(k, self.data[k])], streams[h])
            else:
                for k, v in self.data.items():
                    h = self._partition(k)
                    self.serializer.dump_stream([(k, v)], streams[h])

            for s in streams:
                DiskBytesSpilled += s.tell()
                s.close()

            self.data.clear()
            # self.pdata is cached in `mergeValues` and `mergeCombiners`
            self.pdata.extend([{} for i in range(self.partitions)])

        else:
            for i in range(self.partitions):
                p = os.path.join(path, str(i))
                with open(p, "wb") as f:
                    # dump items in batch
                    if self._sorted:
                        # sort by key only (stable)
                        sorted_items = sorted(self.pdata[i].items(), key=operator.itemgetter(0))
                        self.serializer.dump_stream(sorted_items, f)
                    else:
                        self.serializer.dump_stream(self.pdata[i].items(), f)
                self.pdata[i].clear()
                DiskBytesSpilled += os.path.getsize(p)

        self.spills += 1
        gc.collect()  # release the memory as much as possible
        MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20

    def _merged_items(self, index):
        size = sum(os.path.getsize(os.path.join(self._get_spill_dir(j), str(index)))
                   for j in range(self.spills))
        # if the memory can not hold all the partition,
        # then use sort based merge. Because of compression,
        # the data on disks will be much smaller than needed memory
        if size >= self.memory_limit << 17:  # * 1M / 8
            return self._merge_sorted_items(index)

        self.data = {}
        for j in range(self.spills):
            path = self._get_spill_dir(j)
            p = os.path.join(path, str(index))
            # do not check memory during merging
            with open(p, "rb") as f:
                self.mergeCombiners(self.serializer.load_stream(f), 0)
        return self.data.items()

    def _merge_sorted_items(self, index):
        """ load a partition from disk, then sort and group by key """
        def load_partition(j):
            path = self._get_spill_dir(j)
            p = os.path.join(path, str(index))
            with open(p, 'rb', 65536) as f:
                for v in self.serializer.load_stream(f):
                    yield v

        disk_items = [load_partition(j) for j in range(self.spills)]

        if self._sorted:
            # all the partitions are already sorted
            sorted_items = heapq.merge(disk_items, key=operator.itemgetter(0))

        else:
            # Flatten the combined values, so it will not consume huge
            # memory during merging sort.
            ser = self.flattened_serializer()
            sorter = ExternalSorter(self.memory_limit, ser)
            sorted_items = sorter.sorted(itertools.chain(*disk_items),
                                         key=operator.itemgetter(0))
        return ((k, vs) for k, vs in GroupByKey(sorted_items))


if __name__ == "__main__":
    import doctest
    (failure_count, test_count) = doctest.testmod()
    if failure_count:
        exit(-1)