aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c
diff options
context:
space:
mode:
authorJulian Oes <julian@oes.ch>2013-05-17 11:24:02 +0200
committerJulian Oes <julian@oes.ch>2013-05-17 11:24:02 +0200
commitf5c157e74df12a0cb36b7d27cdad9828d96cc534 (patch)
tree3f758990921a7b52df8afe5131a8298b1141b6f4 /src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c
parent80e8eeab2931e79e31adb17c93f5794e666c5763 (diff)
parentfa816d0fd65da461fd5bf8803cf00caebaf23c5c (diff)
downloadpx4-firmware-f5c157e74df12a0cb36b7d27cdad9828d96cc534.tar.gz
px4-firmware-f5c157e74df12a0cb36b7d27cdad9828d96cc534.tar.bz2
px4-firmware-f5c157e74df12a0cb36b7d27cdad9828d96cc534.zip
Merge remote-tracking branch 'upstream/master' into new_state_machine
Conflicts: src/drivers/px4io/px4io.cpp src/modules/commander/commander.c src/modules/commander/state_machine_helper.c
Diffstat (limited to 'src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c')
-rw-r--r--src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c554
1 files changed, 554 insertions, 0 deletions
diff --git a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c b/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c
new file mode 100644
index 000000000..7f951f86b
--- /dev/null
+++ b/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c
@@ -0,0 +1,554 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010 ARM Limited. All rights reserved.
+*
+* $Date: 15. February 2012
+* $Revision: V1.1.0
+*
+* Project: CMSIS DSP Library
+* Title: arm_fir_f32.c
+*
+* Description: Floating-point FIR filter processing function.
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Version 1.1.0 2012/02/15
+* Updated with more optimizations, bug fixes and minor API changes.
+*
+* Version 1.0.2 2010/11/11
+* Documentation updated.
+*
+* Version 1.0.1 2010/10/05
+* Production release and review comments incorporated.
+*
+* Version 1.0.0 2010/09/20
+* Production release and review comments incorporated.
+*
+* Version 0.0.5 2010/04/26
+* incorporated review comments and updated with latest CMSIS layer
+*
+* Version 0.0.3 2010/03/10
+* Initial version
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup FIR Finite Impulse Response (FIR) Filters
+ *
+ * This set of functions implements Finite Impulse Response (FIR) filters
+ * for Q7, Q15, Q31, and floating-point data types. Fast versions of Q15 and Q31 are also provided.
+ * The functions operate on blocks of input and output data and each call to the function processes
+ * <code>blockSize</code> samples through the filter. <code>pSrc</code> and
+ * <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.
+ *
+ * \par Algorithm:
+ * The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.
+ * Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.
+ * <pre>
+ * y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
+ * </pre>
+ * \par
+ * \image html FIR.gif "Finite Impulse Response filter"
+ * \par
+ * <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
+ * Coefficients are stored in time reversed order.
+ * \par
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
+ * Samples in the state buffer are stored in the following order.
+ * \par
+ * <pre>
+ * {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
+ * </pre>
+ * \par
+ * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.
+ * The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,
+ * to be avoided and yields a significant speed improvement.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter.
+ * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+ * There are separate instance structure declarations for each of the 4 supported data types.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ *
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ * To place an instance structure into a const data section, the instance structure must be manually initialized.
+ * Set the values in the state buffer to zeros before static initialization.
+ * The code below statically initializes each of the 4 different data type filter instance structures
+ * <pre>
+ *arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};
+ *arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};
+ *arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};
+ *arm_fir_instance_q7 S = {numTaps, pState, pCoeffs};
+ * </pre>
+ *
+ * where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
+ * <code>pCoeffs</code> is the address of the coefficient buffer.
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the FIR filter functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+
+/**
+ *
+ * @param[in] *S points to an instance of the floating-point FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ */
+
+#ifndef ARM_MATH_CM0
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
+ float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1u)]);
+
+ /* Apply loop unrolling and compute 4 output values simultaneously.
+ * The variables acc0 ... acc3 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+ blkCnt = blockSize >> 3;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while(blkCnt > 0u)
+ {
+ /* Copy four new input samples into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set all accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+ acc4 = 0.0f;
+ acc5 = 0.0f;
+ acc6 = 0.0f;
+ acc7 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Read the first three samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
+ x0 = *px++;
+ x1 = *px++;
+ x2 = *px++;
+ x3 = *px++;
+ x4 = *px++;
+ x5 = *px++;
+ x6 = *px++;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 3u;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while(tapCnt > 0u)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-3] sample */
+ x7 = *(px++);
+
+ /* acc0 += b[numTaps-1] * x[n-numTaps] */
+ acc0 += x0 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-1] */
+ acc1 += x1 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-2] */
+ acc2 += x2 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-3] */
+ acc3 += x3 * c0;
+
+ /* acc4 += b[numTaps-1] * x[n-numTaps-4] */
+ acc4 += x4 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-5] */
+ acc5 += x5 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-6] */
+ acc6 += x6 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-7] */
+ acc7 += x7 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x1 * c0;
+ acc1 += x2 * c0;
+ acc2 += x3 * c0;
+ acc3 += x4 * c0;
+ acc4 += x5 * c0;
+ acc5 += x6 * c0;
+ acc6 += x7 * c0;
+ acc7 += x0 * c0;
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-5] sample */
+ x1 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x2 * c0;
+ acc1 += x3 * c0;
+ acc2 += x4 * c0;
+ acc3 += x5 * c0;
+ acc4 += x6 * c0;
+ acc5 += x7 * c0;
+ acc6 += x0 * c0;
+ acc7 += x1 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x3 * c0;
+ acc1 += x4 * c0;
+ acc2 += x5 * c0;
+ acc3 += x6 * c0;
+ acc4 += x7 * c0;
+ acc5 += x0 * c0;
+ acc6 += x1 * c0;
+ acc7 += x2 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x4 * c0;
+ acc1 += x5 * c0;
+ acc2 += x6 * c0;
+ acc3 += x7 * c0;
+ acc4 += x0 * c0;
+ acc5 += x1 * c0;
+ acc6 += x2 * c0;
+ acc7 += x3 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x4 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x5 * c0;
+ acc1 += x6 * c0;
+ acc2 += x7 * c0;
+ acc3 += x0 * c0;
+ acc4 += x1 * c0;
+ acc5 += x2 * c0;
+ acc6 += x3 * c0;
+ acc7 += x4 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x5 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x6 * c0;
+ acc1 += x7 * c0;
+ acc2 += x0 * c0;
+ acc3 += x1 * c0;
+ acc4 += x2 * c0;
+ acc5 += x3 * c0;
+ acc6 += x4 * c0;
+ acc7 += x5 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x6 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x7 * c0;
+ acc1 += x0 * c0;
+ acc2 += x1 * c0;
+ acc3 += x2 * c0;
+ acc4 += x3 * c0;
+ acc5 += x4 * c0;
+ acc6 += x5 * c0;
+ acc7 += x6 * c0;
+
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x8u;
+
+ while(tapCnt > 0u)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x7 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+ acc4 += x4 * c0;
+ acc5 += x5 * c0;
+ acc6 += x6 * c0;
+ acc7 += x7 * c0;
+
+ /* Reuse the present sample states for next sample */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+ x3 = x4;
+ x4 = x5;
+ x5 = x6;
+ x6 = x7;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 8;
+
+ /* The results in the 4 accumulators, store in the destination buffer. */
+ *pDst++ = acc0;
+ *pDst++ = acc1;
+ *pDst++ = acc2;
+ *pDst++ = acc3;
+ *pDst++ = acc4;
+ *pDst++ = acc5;
+ *pDst++ = acc6;
+ *pDst++ = acc7;
+
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x8u;
+
+ while(blkCnt > 0u)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = (pCoeffs);
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ acc0 += *px++ * *pb++;
+ i--;
+
+ } while(i > 0u);
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = acc0;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = (numTaps - 1u) >> 2u;
+
+ /* copy data */
+ while(tapCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1u) % 0x4u;
+
+ /* Copy the remaining q31_t data */
+ while(tapCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+#else
+
+void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+
+ /* Run the below code for Cortex-M0 */
+
+ float32_t acc;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1u)]);
+
+ /* Initialize blkCnt with blockSize */
+ blkCnt = blockSize;
+
+ while(blkCnt > 0u)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = pCoeffs;
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
+ acc += *px++ * *pb++;
+ i--;
+
+ } while(i > 0u);
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = acc;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy numTaps number of values */
+ tapCnt = numTaps - 1u;
+
+ /* Copy data */
+ while(tapCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+#endif /* #ifndef ARM_MATH_CM0 */
+
+/**
+ * @} end of FIR group
+ */