aboutsummaryrefslogtreecommitdiff
path: root/src/lib/geo/geo.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/geo/geo.c')
-rw-r--r--src/lib/geo/geo.c468
1 files changed, 468 insertions, 0 deletions
diff --git a/src/lib/geo/geo.c b/src/lib/geo/geo.c
new file mode 100644
index 000000000..43105fdba
--- /dev/null
+++ b/src/lib/geo/geo.c
@@ -0,0 +1,468 @@
+/****************************************************************************
+ *
+ * Copyright (C) 2012 PX4 Development Team. All rights reserved.
+ * Author: Thomas Gubler <thomasgubler@student.ethz.ch>
+ * Julian Oes <joes@student.ethz.ch>
+ * Lorenz Meier <lm@inf.ethz.ch>
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * 3. Neither the name PX4 nor the names of its contributors may be
+ * used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ ****************************************************************************/
+
+/**
+ * @file geo.c
+ *
+ * Geo / math functions to perform geodesic calculations
+ *
+ * @author Thomas Gubler <thomasgubler@student.ethz.ch>
+ * @author Julian Oes <joes@student.ethz.ch>
+ * @author Lorenz Meier <lm@inf.ethz.ch>
+ */
+
+#include <geo/geo.h>
+#include <nuttx/config.h>
+#include <unistd.h>
+#include <pthread.h>
+#include <stdio.h>
+#include <math.h>
+#include <stdbool.h>
+
+
+/* values for map projection */
+static double phi_1;
+static double sin_phi_1;
+static double cos_phi_1;
+static double lambda_0;
+static double scale;
+
+__EXPORT void map_projection_init(double lat_0, double lon_0) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
+{
+ /* notation and formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */
+ phi_1 = lat_0 / 180.0 * M_PI;
+ lambda_0 = lon_0 / 180.0 * M_PI;
+
+ sin_phi_1 = sin(phi_1);
+ cos_phi_1 = cos(phi_1);
+
+ /* calculate local scale by using the relation of true distance and the distance on plane */ //TODO: this is a quick solution, there are probably easier ways to determine the scale
+
+ /* 1) calculate true distance d on sphere to a point: http://www.movable-type.co.uk/scripts/latlong.html */
+ const double r_earth = 6371000;
+
+ double lat1 = phi_1;
+ double lon1 = lambda_0;
+
+ double lat2 = phi_1 + 0.5 / 180 * M_PI;
+ double lon2 = lambda_0 + 0.5 / 180 * M_PI;
+ double sin_lat_2 = sin(lat2);
+ double cos_lat_2 = cos(lat2);
+ double d = acos(sin(lat1) * sin_lat_2 + cos(lat1) * cos_lat_2 * cos(lon2 - lon1)) * r_earth;
+
+ /* 2) calculate distance rho on plane */
+ double k_bar = 0;
+ double c = acos(sin_phi_1 * sin_lat_2 + cos_phi_1 * cos_lat_2 * cos(lon2 - lambda_0));
+
+ if (0 != c)
+ k_bar = c / sin(c);
+
+ double x2 = k_bar * (cos_lat_2 * sin(lon2 - lambda_0)); //Projection of point 2 on plane
+ double y2 = k_bar * ((cos_phi_1 * sin_lat_2 - sin_phi_1 * cos_lat_2 * cos(lon2 - lambda_0)));
+ double rho = sqrt(pow(x2, 2) + pow(y2, 2));
+
+ scale = d / rho;
+
+}
+
+__EXPORT void map_projection_project(double lat, double lon, float *x, float *y)
+{
+ /* notation and formulas accoring to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */
+ double phi = lat / 180.0 * M_PI;
+ double lambda = lon / 180.0 * M_PI;
+
+ double sin_phi = sin(phi);
+ double cos_phi = cos(phi);
+
+ double k_bar = 0;
+ /* using small angle approximation (formula in comment is without aproximation) */
+ double c = acos(sin_phi_1 * sin_phi + cos_phi_1 * cos_phi * (1 - pow((lambda - lambda_0), 2) / 2)); //double c = acos( sin_phi_1 * sin_phi + cos_phi_1 * cos_phi * cos(lambda - lambda_0) );
+
+ if (0 != c)
+ k_bar = c / sin(c);
+
+ /* using small angle approximation (formula in comment is without aproximation) */
+ *y = k_bar * (cos_phi * (lambda - lambda_0)) * scale;//*y = k_bar * (cos_phi * sin(lambda - lambda_0)) * scale;
+ *x = k_bar * ((cos_phi_1 * sin_phi - sin_phi_1 * cos_phi * (1 - pow((lambda - lambda_0), 2) / 2))) * scale; // *x = k_bar * ((cos_phi_1 * sin_phi - sin_phi_1 * cos_phi * cos(lambda - lambda_0))) * scale;
+
+// printf("%phi_1=%.10f, lambda_0 =%.10f\n", phi_1, lambda_0);
+}
+
+__EXPORT void map_projection_reproject(float x, float y, double *lat, double *lon)
+{
+ /* notation and formulas accoring to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */
+
+ double x_descaled = x / scale;
+ double y_descaled = y / scale;
+
+ double c = sqrt(pow(x_descaled, 2) + pow(y_descaled, 2));
+ double sin_c = sin(c);
+ double cos_c = cos(c);
+
+ double lat_sphere = 0;
+
+ if (c != 0)
+ lat_sphere = asin(cos_c * sin_phi_1 + (x_descaled * sin_c * cos_phi_1) / c);
+ else
+ lat_sphere = asin(cos_c * sin_phi_1);
+
+// printf("lat_sphere = %.10f\n",lat_sphere);
+
+ double lon_sphere = 0;
+
+ if (phi_1 == M_PI / 2) {
+ //using small angle approximation (formula in comment is without aproximation)
+ lon_sphere = (lambda_0 - y_descaled / x_descaled); //lon_sphere = (lambda_0 + atan2(-y_descaled, x_descaled));
+
+ } else if (phi_1 == -M_PI / 2) {
+ //using small angle approximation (formula in comment is without aproximation)
+ lon_sphere = (lambda_0 + y_descaled / x_descaled); //lon_sphere = (lambda_0 + atan2(y_descaled, x_descaled));
+
+ } else {
+
+ lon_sphere = (lambda_0 + atan2(y_descaled * sin_c , c * cos_phi_1 * cos_c - x_descaled * sin_phi_1 * sin_c));
+ //using small angle approximation
+// double denominator = (c * cos_phi_1 * cos_c - x_descaled * sin_phi_1 * sin_c);
+// if(denominator != 0)
+// {
+// lon_sphere = (lambda_0 + (y_descaled * sin_c) / denominator);
+// }
+// else
+// {
+// ...
+// }
+ }
+
+// printf("lon_sphere = %.10f\n",lon_sphere);
+
+ *lat = lat_sphere * 180.0 / M_PI;
+ *lon = lon_sphere * 180.0 / M_PI;
+
+}
+
+
+__EXPORT float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
+{
+ double lat_now_rad = lat_now / 180.0d * M_PI;
+ double lon_now_rad = lon_now / 180.0d * M_PI;
+ double lat_next_rad = lat_next / 180.0d * M_PI;
+ double lon_next_rad = lon_next / 180.0d * M_PI;
+
+
+ double d_lat = lat_next_rad - lat_now_rad;
+ double d_lon = lon_next_rad - lon_now_rad;
+
+ double a = sin(d_lat / 2.0d) * sin(d_lat / 2.0d) + sin(d_lon / 2.0d) * sin(d_lon / 2.0d) * cos(lat_now_rad) * cos(lat_next_rad);
+ double c = 2.0d * atan2(sqrt(a), sqrt(1.0d - a));
+
+ const double radius_earth = 6371000.0d;
+ return radius_earth * c;
+}
+
+__EXPORT float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
+{
+ double lat_now_rad = lat_now * M_DEG_TO_RAD;
+ double lon_now_rad = lon_now * M_DEG_TO_RAD;
+ double lat_next_rad = lat_next * M_DEG_TO_RAD;
+ double lon_next_rad = lon_next * M_DEG_TO_RAD;
+
+ double d_lat = lat_next_rad - lat_now_rad;
+ double d_lon = lon_next_rad - lon_now_rad;
+
+ /* conscious mix of double and float trig function to maximize speed and efficiency */
+ float theta = atan2f(sin(d_lon) * cos(lat_next_rad) , cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon));
+
+ theta = _wrap_pi(theta);
+
+ return theta;
+}
+
+__EXPORT void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float* vx, float* vy)
+{
+ double lat_now_rad = lat_now * M_DEG_TO_RAD;
+ double lon_now_rad = lon_now * M_DEG_TO_RAD;
+ double lat_next_rad = lat_next * M_DEG_TO_RAD;
+ double lon_next_rad = lon_next * M_DEG_TO_RAD;
+
+ double d_lat = lat_next_rad - lat_now_rad;
+ double d_lon = lon_next_rad - lon_now_rad;
+
+ /* conscious mix of double and float trig function to maximize speed and efficiency */
+ *vy = CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad);
+ *vx = CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon);
+}
+
+__EXPORT void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float* vx, float* vy)
+{
+ double lat_now_rad = lat_now * M_DEG_TO_RAD;
+ double lon_now_rad = lon_now * M_DEG_TO_RAD;
+ double lat_next_rad = lat_next * M_DEG_TO_RAD;
+ double lon_next_rad = lon_next * M_DEG_TO_RAD;
+
+ double d_lat = lat_next_rad - lat_now_rad;
+ double d_lon = lon_next_rad - lon_now_rad;
+
+ /* conscious mix of double and float trig function to maximize speed and efficiency */
+ *vy = CONSTANTS_RADIUS_OF_EARTH * d_lon;
+ *vx = CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad);
+}
+
+// Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>
+
+__EXPORT int get_distance_to_line(struct crosstrack_error_s * crosstrack_error, double lat_now, double lon_now, double lat_start, double lon_start, double lat_end, double lon_end)
+{
+// This function returns the distance to the nearest point on the track line. Distance is positive if current
+// position is right of the track and negative if left of the track as seen from a point on the track line
+// headed towards the end point.
+
+ float dist_to_end;
+ float bearing_end;
+ float bearing_track;
+ float bearing_diff;
+
+ int return_value = ERROR; // Set error flag, cleared when valid result calculated.
+ crosstrack_error->past_end = false;
+ crosstrack_error->distance = 0.0f;
+ crosstrack_error->bearing = 0.0f;
+
+ // Return error if arguments are bad
+ if (lat_now == 0.0d || lon_now == 0.0d || lat_start == 0.0d || lon_start == 0.0d || lat_end == 0.0d || lon_end == 0.0d) return return_value;
+
+ bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
+ bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end);
+ bearing_diff = bearing_track - bearing_end;
+ bearing_diff = _wrap_pi(bearing_diff);
+
+ // Return past_end = true if past end point of line
+ if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) {
+ crosstrack_error->past_end = true;
+ return_value = OK;
+ return return_value;
+ }
+
+ dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
+ crosstrack_error->distance = (dist_to_end) * sin(bearing_diff);
+
+ if (sin(bearing_diff) >= 0) {
+ crosstrack_error->bearing = _wrap_pi(bearing_track - M_PI_2_F);
+
+ } else {
+ crosstrack_error->bearing = _wrap_pi(bearing_track + M_PI_2_F);
+ }
+
+ return_value = OK;
+
+ return return_value;
+
+}
+
+
+__EXPORT int get_distance_to_arc(struct crosstrack_error_s * crosstrack_error, double lat_now, double lon_now, double lat_center, double lon_center,
+ float radius, float arc_start_bearing, float arc_sweep)
+{
+ // This function returns the distance to the nearest point on the track arc. Distance is positive if current
+ // position is right of the arc and negative if left of the arc as seen from the closest point on the arc and
+ // headed towards the end point.
+
+ // Determine if the current position is inside or outside the sector between the line from the center
+ // to the arc start and the line from the center to the arc end
+ float bearing_sector_start;
+ float bearing_sector_end;
+ float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
+ bool in_sector;
+
+ int return_value = ERROR; // Set error flag, cleared when valid result calculated.
+ crosstrack_error->past_end = false;
+ crosstrack_error->distance = 0.0f;
+ crosstrack_error->bearing = 0.0f;
+
+ // Return error if arguments are bad
+ if (lat_now == 0.0d || lon_now == 0.0d || lat_center == 0.0d || lon_center == 0.0d || radius == 0.0d) return return_value;
+
+
+ if (arc_sweep >= 0) {
+ bearing_sector_start = arc_start_bearing;
+ bearing_sector_end = arc_start_bearing + arc_sweep;
+
+ if (bearing_sector_end > 2.0f * M_PI_F) bearing_sector_end -= M_TWOPI_F;
+
+ } else {
+ bearing_sector_end = arc_start_bearing;
+ bearing_sector_start = arc_start_bearing - arc_sweep;
+
+ if (bearing_sector_start < 0.0f) bearing_sector_start += M_TWOPI_F;
+ }
+
+ in_sector = false;
+
+ // Case where sector does not span zero
+ if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start && bearing_now <= bearing_sector_end) in_sector = true;
+
+ // Case where sector does span zero
+ if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start || bearing_now < bearing_sector_end)) in_sector = true;
+
+ // If in the sector then calculate distance and bearing to closest point
+ if (in_sector) {
+ crosstrack_error->past_end = false;
+ float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
+
+ if (dist_to_center <= radius) {
+ crosstrack_error->distance = radius - dist_to_center;
+ crosstrack_error->bearing = bearing_now + M_PI_F;
+
+ } else {
+ crosstrack_error->distance = dist_to_center - radius;
+ crosstrack_error->bearing = bearing_now;
+ }
+
+ // If out of the sector then calculate dist and bearing to start or end point
+
+ } else {
+
+ // Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude)
+ // and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to
+ // calculate the position of the start and end points. We should not be doing this often
+ // as this function generally will not be called repeatedly when we are out of the sector.
+
+ // TO DO - this is messed up and won't compile
+ float start_disp_x = radius * sin(arc_start_bearing);
+ float start_disp_y = radius * cos(arc_start_bearing);
+ float end_disp_x = radius * sin(_wrapPI(arc_start_bearing + arc_sweep));
+ float end_disp_y = radius * cos(_wrapPI(arc_start_bearing + arc_sweep));
+ float lon_start = lon_now + start_disp_x / 111111.0d;
+ float lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0d;
+ float lon_end = lon_now + end_disp_x / 111111.0d;
+ float lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0d;
+ float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
+ float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
+
+
+ if (dist_to_start < dist_to_end) {
+ crosstrack_error->distance = dist_to_start;
+ crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
+
+ } else {
+ crosstrack_error->past_end = true;
+ crosstrack_error->distance = dist_to_end;
+ crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
+ }
+
+ }
+
+ crosstrack_error->bearing = _wrapPI(crosstrack_error->bearing);
+ return_value = OK;
+ return return_value;
+}
+
+__EXPORT float _wrap_pi(float bearing)
+{
+ /* value is inf or NaN */
+ if (!isfinite(bearing) || bearing == 0) {
+ return bearing;
+ }
+
+ int c = 0;
+
+ while (bearing > M_PI_F && c < 30) {
+ bearing -= M_TWOPI_F;
+ c++;
+ }
+
+ c = 0;
+
+ while (bearing <= -M_PI_F && c < 30) {
+ bearing += M_TWOPI_F;
+ c++;
+ }
+
+ return bearing;
+}
+
+__EXPORT float _wrap_2pi(float bearing)
+{
+ /* value is inf or NaN */
+ if (!isfinite(bearing)) {
+ return bearing;
+ }
+
+ while (bearing >= M_TWOPI_F) {
+ bearing = bearing - M_TWOPI_F;
+ }
+
+ while (bearing < 0.0f) {
+ bearing = bearing + M_TWOPI_F;
+ }
+
+ return bearing;
+}
+
+__EXPORT float _wrap_180(float bearing)
+{
+ /* value is inf or NaN */
+ if (!isfinite(bearing)) {
+ return bearing;
+ }
+
+ while (bearing > 180.0f) {
+ bearing = bearing - 360.0f;
+ }
+
+ while (bearing <= -180.0f) {
+ bearing = bearing + 360.0f;
+ }
+
+ return bearing;
+}
+
+__EXPORT float _wrap_360(float bearing)
+{
+ /* value is inf or NaN */
+ if (!isfinite(bearing)) {
+ return bearing;
+ }
+
+ while (bearing >= 360.0f) {
+ bearing = bearing - 360.0f;
+ }
+
+ while (bearing < 0.0f) {
+ bearing = bearing + 360.0f;
+ }
+
+ return bearing;
+}
+
+