aboutsummaryrefslogtreecommitdiff
path: root/src/modules/ekf_att_pos_estimator/ekf_att_pos_estimator_main.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/ekf_att_pos_estimator/ekf_att_pos_estimator_main.cpp')
-rw-r--r--src/modules/ekf_att_pos_estimator/ekf_att_pos_estimator_main.cpp1728
1 files changed, 1728 insertions, 0 deletions
diff --git a/src/modules/ekf_att_pos_estimator/ekf_att_pos_estimator_main.cpp b/src/modules/ekf_att_pos_estimator/ekf_att_pos_estimator_main.cpp
new file mode 100644
index 000000000..40cb6043f
--- /dev/null
+++ b/src/modules/ekf_att_pos_estimator/ekf_att_pos_estimator_main.cpp
@@ -0,0 +1,1728 @@
+/****************************************************************************
+ *
+ * Copyright (c) 2013, 2014 PX4 Development Team. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * 3. Neither the name PX4 nor the names of its contributors may be
+ * used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ ****************************************************************************/
+
+/**
+ * @file ekf_att_pos_estimator_main.cpp
+ * Implementation of the attitude and position estimator.
+ *
+ * @author Paul Riseborough <p_riseborough@live.com.au>
+ * @author Lorenz Meier <lm@inf.ethz.ch>
+ */
+
+#include <nuttx/config.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <errno.h>
+#include <math.h>
+#include <poll.h>
+#include <time.h>
+#include <float.h>
+
+#define SENSOR_COMBINED_SUB
+
+#include <drivers/drv_hrt.h>
+#include <drivers/drv_gyro.h>
+#include <drivers/drv_accel.h>
+#include <drivers/drv_mag.h>
+#include <drivers/drv_baro.h>
+#ifdef SENSOR_COMBINED_SUB
+#include <uORB/topics/sensor_combined.h>
+#endif
+#include <arch/board/board.h>
+#include <uORB/uORB.h>
+#include <uORB/topics/airspeed.h>
+#include <uORB/topics/vehicle_global_position.h>
+#include <uORB/topics/vehicle_local_position.h>
+#include <uORB/topics/vehicle_gps_position.h>
+#include <uORB/topics/vehicle_attitude.h>
+#include <uORB/topics/actuator_controls.h>
+#include <uORB/topics/vehicle_status.h>
+#include <uORB/topics/parameter_update.h>
+#include <uORB/topics/estimator_status.h>
+#include <uORB/topics/actuator_armed.h>
+#include <uORB/topics/home_position.h>
+#include <uORB/topics/wind_estimate.h>
+#include <systemlib/param/param.h>
+#include <systemlib/err.h>
+#include <geo/geo.h>
+#include <systemlib/perf_counter.h>
+#include <systemlib/systemlib.h>
+#include <mathlib/mathlib.h>
+#include <mavlink/mavlink_log.h>
+
+#include "estimator_23states.h"
+
+
+
+/**
+ * estimator app start / stop handling function
+ *
+ * @ingroup apps
+ */
+extern "C" __EXPORT int ekf_att_pos_estimator_main(int argc, char *argv[]);
+
+__EXPORT uint32_t millis();
+
+static uint64_t IMUmsec = 0;
+static const uint64_t FILTER_INIT_DELAY = 1 * 1000 * 1000;
+
+uint32_t millis()
+{
+ return IMUmsec;
+}
+
+class FixedwingEstimator
+{
+public:
+ /**
+ * Constructor
+ */
+ FixedwingEstimator();
+
+ /**
+ * Destructor, also kills the sensors task.
+ */
+ ~FixedwingEstimator();
+
+ /**
+ * Start the sensors task.
+ *
+ * @return OK on success.
+ */
+ int start();
+
+ /**
+ * Task status
+ *
+ * @return true if the mainloop is running
+ */
+ bool task_running() { return _task_running; }
+
+ /**
+ * Print the current status.
+ */
+ void print_status();
+
+ /**
+ * Trip the filter by feeding it NaN values.
+ */
+ int trip_nan();
+
+ /**
+ * Enable logging.
+ *
+ * @param enable Set to true to enable logging, false to disable
+ */
+ int enable_logging(bool enable);
+
+ /**
+ * Set debug level.
+ *
+ * @param debug Desired debug level - 0 to disable.
+ */
+ int set_debuglevel(unsigned debug) { _debug = debug; return 0; }
+
+private:
+
+ bool _task_should_exit; /**< if true, sensor task should exit */
+ bool _task_running; /**< if true, task is running in its mainloop */
+ int _estimator_task; /**< task handle for sensor task */
+#ifndef SENSOR_COMBINED_SUB
+ int _gyro_sub; /**< gyro sensor subscription */
+ int _accel_sub; /**< accel sensor subscription */
+ int _mag_sub; /**< mag sensor subscription */
+#else
+ int _sensor_combined_sub;
+#endif
+ int _airspeed_sub; /**< airspeed subscription */
+ int _baro_sub; /**< barometer subscription */
+ int _gps_sub; /**< GPS subscription */
+ int _vstatus_sub; /**< vehicle status subscription */
+ int _params_sub; /**< notification of parameter updates */
+ int _manual_control_sub; /**< notification of manual control updates */
+ int _mission_sub;
+ int _home_sub; /**< home position as defined by commander / user */
+
+ orb_advert_t _att_pub; /**< vehicle attitude */
+ orb_advert_t _global_pos_pub; /**< global position */
+ orb_advert_t _local_pos_pub; /**< position in local frame */
+ orb_advert_t _estimator_status_pub; /**< status of the estimator */
+ orb_advert_t _wind_pub; /**< wind estimate */
+
+ struct vehicle_attitude_s _att; /**< vehicle attitude */
+ struct gyro_report _gyro;
+ struct accel_report _accel;
+ struct mag_report _mag;
+ struct airspeed_s _airspeed; /**< airspeed */
+ struct baro_report _baro; /**< baro readings */
+ struct vehicle_status_s _vstatus; /**< vehicle status */
+ struct vehicle_global_position_s _global_pos; /**< global vehicle position */
+ struct vehicle_local_position_s _local_pos; /**< local vehicle position */
+ struct vehicle_gps_position_s _gps; /**< GPS position */
+ struct wind_estimate_s _wind; /**< Wind estimate */
+
+ struct gyro_scale _gyro_offsets;
+ struct accel_scale _accel_offsets;
+ struct mag_scale _mag_offsets;
+
+#ifdef SENSOR_COMBINED_SUB
+ struct sensor_combined_s _sensor_combined;
+#endif
+
+ struct map_projection_reference_s _pos_ref;
+
+ float _baro_ref; /**< barometer reference altitude */
+ float _baro_ref_offset; /**< offset between initial baro reference and GPS init baro altitude */
+ float _baro_gps_offset; /**< offset between baro altitude (at GPS init time) and GPS altitude */
+
+ perf_counter_t _loop_perf; ///< loop performance counter
+ perf_counter_t _perf_gyro; ///<local performance counter for gyro updates
+ perf_counter_t _perf_mag; ///<local performance counter for mag updates
+ perf_counter_t _perf_gps; ///<local performance counter for gps updates
+ perf_counter_t _perf_baro; ///<local performance counter for baro updates
+ perf_counter_t _perf_airspeed; ///<local performance counter for airspeed updates
+ perf_counter_t _perf_reset; ///<local performance counter for filter resets
+
+ bool _baro_init;
+ bool _gps_initialized;
+ hrt_abstime _gps_start_time;
+ hrt_abstime _filter_start_time;
+ hrt_abstime _last_sensor_timestamp;
+ hrt_abstime _last_run;
+ bool _gyro_valid;
+ bool _accel_valid;
+ bool _mag_valid;
+ bool _ekf_logging; ///< log EKF state
+ unsigned _debug; ///< debug level - default 0
+
+ int _mavlink_fd;
+
+ struct {
+ int32_t vel_delay_ms;
+ int32_t pos_delay_ms;
+ int32_t height_delay_ms;
+ int32_t mag_delay_ms;
+ int32_t tas_delay_ms;
+ float velne_noise;
+ float veld_noise;
+ float posne_noise;
+ float posd_noise;
+ float mag_noise;
+ float gyro_pnoise;
+ float acc_pnoise;
+ float gbias_pnoise;
+ float abias_pnoise;
+ float mage_pnoise;
+ float magb_pnoise;
+ float eas_noise;
+ float pos_stddev_threshold;
+ } _parameters; /**< local copies of interesting parameters */
+
+ struct {
+ param_t vel_delay_ms;
+ param_t pos_delay_ms;
+ param_t height_delay_ms;
+ param_t mag_delay_ms;
+ param_t tas_delay_ms;
+ param_t velne_noise;
+ param_t veld_noise;
+ param_t posne_noise;
+ param_t posd_noise;
+ param_t mag_noise;
+ param_t gyro_pnoise;
+ param_t acc_pnoise;
+ param_t gbias_pnoise;
+ param_t abias_pnoise;
+ param_t mage_pnoise;
+ param_t magb_pnoise;
+ param_t eas_noise;
+ param_t pos_stddev_threshold;
+ } _parameter_handles; /**< handles for interesting parameters */
+
+ AttPosEKF *_ekf;
+
+ float _velocity_xy_filtered;
+ float _velocity_z_filtered;
+ float _airspeed_filtered;
+
+ /**
+ * Update our local parameter cache.
+ */
+ int parameters_update();
+
+ /**
+ * Update control outputs
+ *
+ */
+ void control_update();
+
+ /**
+ * Check for changes in vehicle status.
+ */
+ void vehicle_status_poll();
+
+ /**
+ * Shim for calling task_main from task_create.
+ */
+ static void task_main_trampoline(int argc, char *argv[]);
+
+ /**
+ * Main filter task.
+ */
+ void task_main();
+
+ /**
+ * Check filter sanity state
+ *
+ * @return zero if ok, non-zero for a filter error condition.
+ */
+ int check_filter_state();
+};
+
+namespace estimator
+{
+
+/* oddly, ERROR is not defined for c++ */
+#ifdef ERROR
+# undef ERROR
+#endif
+static const int ERROR = -1;
+
+FixedwingEstimator *g_estimator = nullptr;
+}
+
+FixedwingEstimator::FixedwingEstimator() :
+
+ _task_should_exit(false),
+ _task_running(false),
+ _estimator_task(-1),
+
+/* subscriptions */
+#ifndef SENSOR_COMBINED_SUB
+ _gyro_sub(-1),
+ _accel_sub(-1),
+ _mag_sub(-1),
+#else
+ _sensor_combined_sub(-1),
+#endif
+ _airspeed_sub(-1),
+ _baro_sub(-1),
+ _gps_sub(-1),
+ _vstatus_sub(-1),
+ _params_sub(-1),
+ _manual_control_sub(-1),
+ _mission_sub(-1),
+ _home_sub(-1),
+
+/* publications */
+ _att_pub(-1),
+ _global_pos_pub(-1),
+ _local_pos_pub(-1),
+ _estimator_status_pub(-1),
+ _wind_pub(-1),
+
+ _att({}),
+ _gyro({}),
+ _accel({}),
+ _mag({}),
+ _airspeed({}),
+ _baro({}),
+ _vstatus({}),
+ _global_pos({}),
+ _local_pos({}),
+ _gps({}),
+ _wind({}),
+
+ _gyro_offsets({}),
+ _accel_offsets({}),
+ _mag_offsets({}),
+
+ #ifdef SENSOR_COMBINED_SUB
+ _sensor_combined({}),
+ #endif
+
+ _baro_ref(0.0f),
+ _baro_ref_offset(0.0f),
+ _baro_gps_offset(0.0f),
+
+/* performance counters */
+ _loop_perf(perf_alloc(PC_ELAPSED, "ekf_att_pos_estimator")),
+ _perf_gyro(perf_alloc(PC_INTERVAL, "ekf_att_pos_gyro_upd")),
+ _perf_mag(perf_alloc(PC_INTERVAL, "ekf_att_pos_mag_upd")),
+ _perf_gps(perf_alloc(PC_INTERVAL, "ekf_att_pos_gps_upd")),
+ _perf_baro(perf_alloc(PC_INTERVAL, "ekf_att_pos_baro_upd")),
+ _perf_airspeed(perf_alloc(PC_INTERVAL, "ekf_att_pos_aspd_upd")),
+ _perf_reset(perf_alloc(PC_COUNT, "ekf_att_pos_reset")),
+
+/* states */
+ _baro_init(false),
+ _gps_initialized(false),
+ _gyro_valid(false),
+ _accel_valid(false),
+ _mag_valid(false),
+ _ekf_logging(true),
+ _debug(0),
+ _mavlink_fd(-1),
+ _ekf(nullptr),
+ _velocity_xy_filtered(0.0f),
+ _velocity_z_filtered(0.0f),
+ _airspeed_filtered(0.0f)
+{
+
+ _last_run = hrt_absolute_time();
+
+ _parameter_handles.vel_delay_ms = param_find("PE_VEL_DELAY_MS");
+ _parameter_handles.pos_delay_ms = param_find("PE_POS_DELAY_MS");
+ _parameter_handles.height_delay_ms = param_find("PE_HGT_DELAY_MS");
+ _parameter_handles.mag_delay_ms = param_find("PE_MAG_DELAY_MS");
+ _parameter_handles.tas_delay_ms = param_find("PE_TAS_DELAY_MS");
+ _parameter_handles.velne_noise = param_find("PE_VELNE_NOISE");
+ _parameter_handles.veld_noise = param_find("PE_VELD_NOISE");
+ _parameter_handles.posne_noise = param_find("PE_POSNE_NOISE");
+ _parameter_handles.posd_noise = param_find("PE_POSD_NOISE");
+ _parameter_handles.mag_noise = param_find("PE_MAG_NOISE");
+ _parameter_handles.gyro_pnoise = param_find("PE_GYRO_PNOISE");
+ _parameter_handles.acc_pnoise = param_find("PE_ACC_PNOISE");
+ _parameter_handles.gbias_pnoise = param_find("PE_GBIAS_PNOISE");
+ _parameter_handles.abias_pnoise = param_find("PE_ABIAS_PNOISE");
+ _parameter_handles.mage_pnoise = param_find("PE_MAGE_PNOISE");
+ _parameter_handles.magb_pnoise = param_find("PE_MAGB_PNOISE");
+ _parameter_handles.eas_noise = param_find("PE_EAS_NOISE");
+ _parameter_handles.pos_stddev_threshold = param_find("PE_POSDEV_INIT");
+
+ /* fetch initial parameter values */
+ parameters_update();
+
+ /* get offsets */
+
+ int fd, res;
+
+ fd = open(GYRO_DEVICE_PATH, O_RDONLY);
+
+ if (fd > 0) {
+ res = ioctl(fd, GYROIOCGSCALE, (long unsigned int)&_gyro_offsets);
+ close(fd);
+
+ if (res) {
+ warnx("G SCALE FAIL");
+ }
+ }
+
+ fd = open(ACCEL_DEVICE_PATH, O_RDONLY);
+
+ if (fd > 0) {
+ res = ioctl(fd, ACCELIOCGSCALE, (long unsigned int)&_accel_offsets);
+ close(fd);
+
+ if (res) {
+ warnx("A SCALE FAIL");
+ }
+ }
+
+ fd = open(MAG_DEVICE_PATH, O_RDONLY);
+
+ if (fd > 0) {
+ res = ioctl(fd, MAGIOCGSCALE, (long unsigned int)&_mag_offsets);
+ close(fd);
+
+ if (res) {
+ warnx("M SCALE FAIL");
+ }
+ }
+}
+
+FixedwingEstimator::~FixedwingEstimator()
+{
+ if (_estimator_task != -1) {
+
+ /* task wakes up every 100ms or so at the longest */
+ _task_should_exit = true;
+
+ /* wait for a second for the task to quit at our request */
+ unsigned i = 0;
+
+ do {
+ /* wait 20ms */
+ usleep(20000);
+
+ /* if we have given up, kill it */
+ if (++i > 50) {
+ task_delete(_estimator_task);
+ break;
+ }
+ } while (_estimator_task != -1);
+ }
+
+ delete _ekf;
+
+ estimator::g_estimator = nullptr;
+}
+
+int
+FixedwingEstimator::enable_logging(bool logging)
+{
+ _ekf_logging = logging;
+
+ return 0;
+}
+
+int
+FixedwingEstimator::parameters_update()
+{
+
+ param_get(_parameter_handles.vel_delay_ms, &(_parameters.vel_delay_ms));
+ param_get(_parameter_handles.pos_delay_ms, &(_parameters.pos_delay_ms));
+ param_get(_parameter_handles.height_delay_ms, &(_parameters.height_delay_ms));
+ param_get(_parameter_handles.mag_delay_ms, &(_parameters.mag_delay_ms));
+ param_get(_parameter_handles.tas_delay_ms, &(_parameters.tas_delay_ms));
+ param_get(_parameter_handles.velne_noise, &(_parameters.velne_noise));
+ param_get(_parameter_handles.veld_noise, &(_parameters.veld_noise));
+ param_get(_parameter_handles.posne_noise, &(_parameters.posne_noise));
+ param_get(_parameter_handles.posd_noise, &(_parameters.posd_noise));
+ param_get(_parameter_handles.mag_noise, &(_parameters.mag_noise));
+ param_get(_parameter_handles.gyro_pnoise, &(_parameters.gyro_pnoise));
+ param_get(_parameter_handles.acc_pnoise, &(_parameters.acc_pnoise));
+ param_get(_parameter_handles.gbias_pnoise, &(_parameters.gbias_pnoise));
+ param_get(_parameter_handles.abias_pnoise, &(_parameters.abias_pnoise));
+ param_get(_parameter_handles.mage_pnoise, &(_parameters.mage_pnoise));
+ param_get(_parameter_handles.magb_pnoise, &(_parameters.magb_pnoise));
+ param_get(_parameter_handles.eas_noise, &(_parameters.eas_noise));
+ param_get(_parameter_handles.pos_stddev_threshold, &(_parameters.pos_stddev_threshold));
+
+ if (_ekf) {
+ // _ekf->yawVarScale = 1.0f;
+ // _ekf->windVelSigma = 0.1f;
+ _ekf->dAngBiasSigma = _parameters.gbias_pnoise;
+ _ekf->dVelBiasSigma = _parameters.abias_pnoise;
+ _ekf->magEarthSigma = _parameters.mage_pnoise;
+ _ekf->magBodySigma = _parameters.magb_pnoise;
+ // _ekf->gndHgtSigma = 0.02f;
+ _ekf->vneSigma = _parameters.velne_noise;
+ _ekf->vdSigma = _parameters.veld_noise;
+ _ekf->posNeSigma = _parameters.posne_noise;
+ _ekf->posDSigma = _parameters.posd_noise;
+ _ekf->magMeasurementSigma = _parameters.mag_noise;
+ _ekf->gyroProcessNoise = _parameters.gyro_pnoise;
+ _ekf->accelProcessNoise = _parameters.acc_pnoise;
+ _ekf->airspeedMeasurementSigma = _parameters.eas_noise;
+ }
+
+ return OK;
+}
+
+void
+FixedwingEstimator::vehicle_status_poll()
+{
+ bool vstatus_updated;
+
+ /* Check HIL state if vehicle status has changed */
+ orb_check(_vstatus_sub, &vstatus_updated);
+
+ if (vstatus_updated) {
+
+ orb_copy(ORB_ID(vehicle_status), _vstatus_sub, &_vstatus);
+ }
+}
+
+int
+FixedwingEstimator::check_filter_state()
+{
+ /*
+ * CHECK IF THE INPUT DATA IS SANE
+ */
+
+ struct ekf_status_report ekf_report;
+
+ int check = _ekf->CheckAndBound(&ekf_report);
+
+ const char* const feedback[] = { 0,
+ "NaN in states, resetting",
+ "stale IMU data, resetting",
+ "got initial position lock",
+ "excessive gyro offsets",
+ "GPS velocity divergence",
+ "excessive covariances",
+ "unknown condition"};
+
+ // Print out error condition
+ if (check) {
+ unsigned warn_index = static_cast<unsigned>(check);
+ unsigned max_warn_index = (sizeof(feedback) / sizeof(feedback[0]));
+
+ if (max_warn_index < warn_index) {
+ warn_index = max_warn_index;
+ }
+
+ warnx("reset: %s", feedback[warn_index]);
+ mavlink_log_critical(_mavlink_fd, "[ekf] re-init: %s", feedback[warn_index]);
+ }
+
+ struct estimator_status_report rep;
+ memset(&rep, 0, sizeof(rep));
+
+ // If error flag is set, we got a filter reset
+ if (check && ekf_report.error) {
+
+ // Count the reset condition
+ perf_count(_perf_reset);
+
+ } else if (_ekf_logging) {
+ _ekf->GetFilterState(&ekf_report);
+ }
+
+ if (_ekf_logging || check) {
+ rep.timestamp = hrt_absolute_time();
+
+ rep.nan_flags |= (((uint8_t)ekf_report.angNaN) << 0);
+ rep.nan_flags |= (((uint8_t)ekf_report.summedDelVelNaN) << 1);
+ rep.nan_flags |= (((uint8_t)ekf_report.KHNaN) << 2);
+ rep.nan_flags |= (((uint8_t)ekf_report.KHPNaN) << 3);
+ rep.nan_flags |= (((uint8_t)ekf_report.PNaN) << 4);
+ rep.nan_flags |= (((uint8_t)ekf_report.covarianceNaN) << 5);
+ rep.nan_flags |= (((uint8_t)ekf_report.kalmanGainsNaN) << 6);
+ rep.nan_flags |= (((uint8_t)ekf_report.statesNaN) << 7);
+
+ rep.health_flags |= (((uint8_t)ekf_report.velHealth) << 0);
+ rep.health_flags |= (((uint8_t)ekf_report.posHealth) << 1);
+ rep.health_flags |= (((uint8_t)ekf_report.hgtHealth) << 2);
+ rep.health_flags |= (((uint8_t)!ekf_report.gyroOffsetsExcessive) << 3);
+ // rep.health_flags |= (((uint8_t)ekf_report.onGround) << 4);
+ // rep.health_flags |= (((uint8_t)ekf_report.staticMode) << 5);
+ // rep.health_flags |= (((uint8_t)ekf_report.useCompass) << 6);
+ // rep.health_flags |= (((uint8_t)ekf_report.useAirspeed) << 7);
+
+ rep.timeout_flags |= (((uint8_t)ekf_report.velTimeout) << 0);
+ rep.timeout_flags |= (((uint8_t)ekf_report.posTimeout) << 1);
+ rep.timeout_flags |= (((uint8_t)ekf_report.hgtTimeout) << 2);
+ rep.timeout_flags |= (((uint8_t)ekf_report.imuTimeout) << 3);
+
+ if (_debug > 10) {
+
+ if (rep.health_flags < ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3))) {
+ warnx("health: VEL:%s POS:%s HGT:%s OFFS:%s",
+ ((rep.health_flags & (1 << 0)) ? "OK" : "ERR"),
+ ((rep.health_flags & (1 << 1)) ? "OK" : "ERR"),
+ ((rep.health_flags & (1 << 2)) ? "OK" : "ERR"),
+ ((rep.health_flags & (1 << 3)) ? "OK" : "ERR"));
+ }
+
+ if (rep.timeout_flags) {
+ warnx("timeout: %s%s%s%s",
+ ((rep.timeout_flags & (1 << 0)) ? "VEL " : ""),
+ ((rep.timeout_flags & (1 << 1)) ? "POS " : ""),
+ ((rep.timeout_flags & (1 << 2)) ? "HGT " : ""),
+ ((rep.timeout_flags & (1 << 3)) ? "IMU " : ""));
+ }
+ }
+
+ // Copy all states or at least all that we can fit
+ unsigned ekf_n_states = ekf_report.n_states;
+ unsigned max_states = (sizeof(rep.states) / sizeof(rep.states[0]));
+ rep.n_states = (ekf_n_states < max_states) ? ekf_n_states : max_states;
+
+ for (unsigned i = 0; i < rep.n_states; i++) {
+ rep.states[i] = ekf_report.states[i];
+ }
+
+ for (unsigned i = 0; i < rep.n_states; i++) {
+ rep.states[i] = ekf_report.states[i];
+ }
+
+ if (_estimator_status_pub > 0) {
+ orb_publish(ORB_ID(estimator_status), _estimator_status_pub, &rep);
+ } else {
+ _estimator_status_pub = orb_advertise(ORB_ID(estimator_status), &rep);
+ }
+ }
+
+ return check;
+}
+
+void
+FixedwingEstimator::task_main_trampoline(int argc, char *argv[])
+{
+ estimator::g_estimator->task_main();
+}
+
+void
+FixedwingEstimator::task_main()
+{
+ _mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
+
+ _ekf = new AttPosEKF();
+ float dt = 0.0f; // time lapsed since last covariance prediction
+ _filter_start_time = hrt_absolute_time();
+
+ if (!_ekf) {
+ errx(1, "OUT OF MEM!");
+ }
+
+ /*
+ * do subscriptions
+ */
+ _baro_sub = orb_subscribe(ORB_ID(sensor_baro));
+ _airspeed_sub = orb_subscribe(ORB_ID(airspeed));
+ _gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
+ _vstatus_sub = orb_subscribe(ORB_ID(vehicle_status));
+ _params_sub = orb_subscribe(ORB_ID(parameter_update));
+ _home_sub = orb_subscribe(ORB_ID(home_position));
+
+ /* rate limit vehicle status updates to 5Hz */
+ orb_set_interval(_vstatus_sub, 200);
+
+#ifndef SENSOR_COMBINED_SUB
+
+ _gyro_sub = orb_subscribe(ORB_ID(sensor_gyro));
+ _accel_sub = orb_subscribe(ORB_ID(sensor_accel));
+ _mag_sub = orb_subscribe(ORB_ID(sensor_mag));
+
+ /* rate limit gyro updates to 50 Hz */
+ /* XXX remove this!, BUT increase the data buffer size! */
+ orb_set_interval(_gyro_sub, 4);
+#else
+ _sensor_combined_sub = orb_subscribe(ORB_ID(sensor_combined));
+ /* XXX remove this!, BUT increase the data buffer size! */
+ orb_set_interval(_sensor_combined_sub, 9);
+#endif
+
+ /* sets also parameters in the EKF object */
+ parameters_update();
+
+ Vector3f lastAngRate;
+ Vector3f lastAccel;
+
+ /* wakeup source(s) */
+ struct pollfd fds[2];
+
+ /* Setup of loop */
+ fds[0].fd = _params_sub;
+ fds[0].events = POLLIN;
+#ifndef SENSOR_COMBINED_SUB
+ fds[1].fd = _gyro_sub;
+ fds[1].events = POLLIN;
+#else
+ fds[1].fd = _sensor_combined_sub;
+ fds[1].events = POLLIN;
+#endif
+
+ bool newDataGps = false;
+ bool newHgtData = false;
+ bool newAdsData = false;
+ bool newDataMag = false;
+
+ float posNED[3] = {0.0f, 0.0f, 0.0f}; // North, East Down position (m)
+
+ uint64_t last_gps = 0;
+ _gps.vel_n_m_s = 0.0f;
+ _gps.vel_e_m_s = 0.0f;
+ _gps.vel_d_m_s = 0.0f;
+
+ _task_running = true;
+
+ while (!_task_should_exit) {
+
+ /* wait for up to 500ms for data */
+ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);
+
+ /* timed out - periodic check for _task_should_exit, etc. */
+ if (pret == 0)
+ continue;
+
+ /* this is undesirable but not much we can do - might want to flag unhappy status */
+ if (pret < 0) {
+ warn("POLL ERR %d, %d", pret, errno);
+ continue;
+ }
+
+ perf_begin(_loop_perf);
+
+ /* only update parameters if they changed */
+ if (fds[0].revents & POLLIN) {
+ /* read from param to clear updated flag */
+ struct parameter_update_s update;
+ orb_copy(ORB_ID(parameter_update), _params_sub, &update);
+
+ /* update parameters from storage */
+ parameters_update();
+ }
+
+ /* only run estimator if gyro updated */
+ if (fds[1].revents & POLLIN) {
+
+ /* check vehicle status for changes to publication state */
+ bool prev_hil = (_vstatus.hil_state == HIL_STATE_ON);
+ vehicle_status_poll();
+
+ bool accel_updated;
+ bool mag_updated;
+
+ perf_count(_perf_gyro);
+
+ /* Reset baro reference if switching to HIL, reset sensor states */
+ if (!prev_hil && (_vstatus.hil_state == HIL_STATE_ON)) {
+ /* system is in HIL now, wait for measurements to come in one last round */
+ usleep(60000);
+
+#ifndef SENSOR_COMBINED_SUB
+ orb_copy(ORB_ID(sensor_gyro), _gyro_sub, &_gyro);
+ orb_copy(ORB_ID(sensor_accel), _accel_sub, &_accel);
+ orb_copy(ORB_ID(sensor_mag), _mag_sub, &_mag);
+#else
+ /* now read all sensor publications to ensure all real sensor data is purged */
+ orb_copy(ORB_ID(sensor_combined), _sensor_combined_sub, &_sensor_combined);
+#endif
+
+ /* set sensors to de-initialized state */
+ _gyro_valid = false;
+ _accel_valid = false;
+ _mag_valid = false;
+
+ _baro_init = false;
+ _gps_initialized = false;
+ _last_sensor_timestamp = hrt_absolute_time();
+ _last_run = _last_sensor_timestamp;
+
+ _ekf->ZeroVariables();
+ _ekf->dtIMU = 0.01f;
+ _filter_start_time = _last_sensor_timestamp;
+
+ /* now skip this loop and get data on the next one, which will also re-init the filter */
+ continue;
+ }
+
+ /**
+ * PART ONE: COLLECT ALL DATA
+ **/
+
+ /* load local copies */
+#ifndef SENSOR_COMBINED_SUB
+ orb_copy(ORB_ID(sensor_gyro), _gyro_sub, &_gyro);
+
+
+ orb_check(_accel_sub, &accel_updated);
+
+ if (accel_updated) {
+ orb_copy(ORB_ID(sensor_accel), _accel_sub, &_accel);
+ }
+
+ _last_sensor_timestamp = _gyro.timestamp;
+ IMUmsec = _gyro.timestamp / 1e3f;
+
+ float deltaT = (_gyro.timestamp - _last_run) / 1e6f;
+ _last_run = _gyro.timestamp;
+
+ /* guard against too large deltaT's */
+ if (!isfinite(deltaT) || deltaT > 1.0f || deltaT < 0.000001f) {
+ deltaT = 0.01f;
+ }
+
+
+ // Always store data, independent of init status
+ /* fill in last data set */
+ _ekf->dtIMU = deltaT;
+
+ if (isfinite(_gyro.x) &&
+ isfinite(_gyro.y) &&
+ isfinite(_gyro.z)) {
+ _ekf->angRate.x = _gyro.x;
+ _ekf->angRate.y = _gyro.y;
+ _ekf->angRate.z = _gyro.z;
+
+ if (!_gyro_valid) {
+ lastAngRate = _ekf->angRate;
+ }
+
+ _gyro_valid = true;
+ }
+
+ if (accel_updated) {
+ _ekf->accel.x = _accel.x;
+ _ekf->accel.y = _accel.y;
+ _ekf->accel.z = _accel.z;
+
+ if (!_accel_valid) {
+ lastAccel = _ekf->accel;
+ }
+
+ _accel_valid = true;
+ }
+
+ _ekf->dAngIMU = 0.5f * (angRate + lastAngRate) * dtIMU;
+ _ekf->lastAngRate = angRate;
+ _ekf->dVelIMU = 0.5f * (accel + lastAccel) * dtIMU;
+ _ekf->lastAccel = accel;
+
+
+#else
+ orb_copy(ORB_ID(sensor_combined), _sensor_combined_sub, &_sensor_combined);
+
+ static hrt_abstime last_accel = 0;
+ static hrt_abstime last_mag = 0;
+
+ if (last_accel != _sensor_combined.accelerometer_timestamp) {
+ accel_updated = true;
+ } else {
+ accel_updated = false;
+ }
+
+ last_accel = _sensor_combined.accelerometer_timestamp;
+
+
+ // Copy gyro and accel
+ _last_sensor_timestamp = _sensor_combined.timestamp;
+ IMUmsec = _sensor_combined.timestamp / 1e3f;
+
+ float deltaT = (_sensor_combined.timestamp - _last_run) / 1e6f;
+
+ /* guard against too large deltaT's */
+ if (!isfinite(deltaT) || deltaT > 1.0f || deltaT < 0.000001f) {
+ deltaT = 0.01f;
+ }
+
+ _last_run = _sensor_combined.timestamp;
+
+ // Always store data, independent of init status
+ /* fill in last data set */
+ _ekf->dtIMU = deltaT;
+
+ if (isfinite(_sensor_combined.gyro_rad_s[0]) &&
+ isfinite(_sensor_combined.gyro_rad_s[1]) &&
+ isfinite(_sensor_combined.gyro_rad_s[2])) {
+ _ekf->angRate.x = _sensor_combined.gyro_rad_s[0];
+ _ekf->angRate.y = _sensor_combined.gyro_rad_s[1];
+ _ekf->angRate.z = _sensor_combined.gyro_rad_s[2];
+
+ if (!_gyro_valid) {
+ lastAngRate = _ekf->angRate;
+ }
+
+ _gyro_valid = true;
+ perf_count(_perf_gyro);
+ }
+
+ if (accel_updated) {
+ _ekf->accel.x = _sensor_combined.accelerometer_m_s2[0];
+ _ekf->accel.y = _sensor_combined.accelerometer_m_s2[1];
+ _ekf->accel.z = _sensor_combined.accelerometer_m_s2[2];
+
+ if (!_accel_valid) {
+ lastAccel = _ekf->accel;
+ }
+
+ _accel_valid = true;
+ }
+
+ _ekf->dAngIMU = 0.5f * (_ekf->angRate + lastAngRate) * _ekf->dtIMU;
+ lastAngRate = _ekf->angRate;
+ _ekf->dVelIMU = 0.5f * (_ekf->accel + lastAccel) * _ekf->dtIMU;
+ lastAccel = _ekf->accel;
+
+ if (last_mag != _sensor_combined.magnetometer_timestamp) {
+ mag_updated = true;
+ newDataMag = true;
+
+ } else {
+ newDataMag = false;
+ }
+
+ last_mag = _sensor_combined.magnetometer_timestamp;
+
+#endif
+
+ //warnx("dang: %8.4f %8.4f dvel: %8.4f %8.4f", _ekf->dAngIMU.x, _ekf->dAngIMU.z, _ekf->dVelIMU.x, _ekf->dVelIMU.z);
+
+ bool airspeed_updated;
+ orb_check(_airspeed_sub, &airspeed_updated);
+
+ if (airspeed_updated) {
+ orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed);
+ perf_count(_perf_airspeed);
+
+ _ekf->VtasMeas = _airspeed.true_airspeed_m_s;
+ newAdsData = true;
+
+ } else {
+ newAdsData = false;
+ }
+
+ bool gps_updated;
+ orb_check(_gps_sub, &gps_updated);
+
+ if (gps_updated) {
+
+ last_gps = _gps.timestamp_position;
+
+ orb_copy(ORB_ID(vehicle_gps_position), _gps_sub, &_gps);
+ perf_count(_perf_gps);
+
+ if (_gps.fix_type < 3) {
+ newDataGps = false;
+
+ } else {
+
+ /* store time of valid GPS measurement */
+ _gps_start_time = hrt_absolute_time();
+
+ /* check if we had a GPS outage for a long time */
+ if (hrt_elapsed_time(&last_gps) > 5 * 1000 * 1000) {
+ _ekf->ResetPosition();
+ _ekf->ResetVelocity();
+ _ekf->ResetStoredStates();
+ }
+
+ /* fuse GPS updates */
+
+ //_gps.timestamp / 1e3;
+ _ekf->GPSstatus = _gps.fix_type;
+ _ekf->velNED[0] = _gps.vel_n_m_s;
+ _ekf->velNED[1] = _gps.vel_e_m_s;
+ _ekf->velNED[2] = _gps.vel_d_m_s;
+
+ // warnx("GPS updated: status: %d, vel: %8.4f %8.4f %8.4f", (int)GPSstatus, velNED[0], velNED[1], velNED[2]);
+
+ _ekf->gpsLat = math::radians(_gps.lat / (double)1e7);
+ _ekf->gpsLon = math::radians(_gps.lon / (double)1e7) - M_PI;
+ _ekf->gpsHgt = _gps.alt / 1e3f;
+
+ // if (_gps.s_variance_m_s > 0.25f && _gps.s_variance_m_s < 100.0f * 100.0f) {
+ // _ekf->vneSigma = sqrtf(_gps.s_variance_m_s);
+ // } else {
+ // _ekf->vneSigma = _parameters.velne_noise;
+ // }
+
+ // if (_gps.p_variance_m > 0.25f && _gps.p_variance_m < 100.0f * 100.0f) {
+ // _ekf->posNeSigma = sqrtf(_gps.p_variance_m);
+ // } else {
+ // _ekf->posNeSigma = _parameters.posne_noise;
+ // }
+
+ // warnx("vel: %8.4f pos: %8.4f", _gps.s_variance_m_s, _gps.p_variance_m);
+
+ newDataGps = true;
+
+ }
+
+ }
+
+ bool baro_updated;
+ orb_check(_baro_sub, &baro_updated);
+
+ if (baro_updated) {
+ orb_copy(ORB_ID(sensor_baro), _baro_sub, &_baro);
+
+ _ekf->baroHgt = _baro.altitude;
+
+ if (!_baro_init) {
+ _baro_ref = _baro.altitude;
+ _baro_init = true;
+ warnx("ALT REF INIT");
+ }
+
+ perf_count(_perf_baro);
+
+ newHgtData = true;
+ } else {
+ newHgtData = false;
+ }
+
+#ifndef SENSOR_COMBINED_SUB
+ orb_check(_mag_sub, &mag_updated);
+#endif
+
+ if (mag_updated) {
+
+ _mag_valid = true;
+
+ perf_count(_perf_mag);
+
+#ifndef SENSOR_COMBINED_SUB
+ orb_copy(ORB_ID(sensor_mag), _mag_sub, &_mag);
+
+ // XXX we compensate the offsets upfront - should be close to zero.
+ // 0.001f
+ _ekf->magData.x = _mag.x;
+ _ekf->magBias.x = 0.000001f; // _mag_offsets.x_offset
+
+ _ekf->magData.y = _mag.y;
+ _ekf->magBias.y = 0.000001f; // _mag_offsets.y_offset
+
+ _ekf->magData.z = _mag.z;
+ _ekf->magBias.z = 0.000001f; // _mag_offsets.y_offset
+
+#else
+
+ // XXX we compensate the offsets upfront - should be close to zero.
+ // 0.001f
+ _ekf->magData.x = _sensor_combined.magnetometer_ga[0];
+ _ekf->magBias.x = 0.000001f; // _mag_offsets.x_offset
+
+ _ekf->magData.y = _sensor_combined.magnetometer_ga[1];
+ _ekf->magBias.y = 0.000001f; // _mag_offsets.y_offset
+
+ _ekf->magData.z = _sensor_combined.magnetometer_ga[2];
+ _ekf->magBias.z = 0.000001f; // _mag_offsets.y_offset
+
+#endif
+
+ newDataMag = true;
+
+ } else {
+ newDataMag = false;
+ }
+
+ /*
+ * CHECK IF ITS THE RIGHT TIME TO RUN THINGS ALREADY
+ */
+ if (hrt_elapsed_time(&_filter_start_time) < FILTER_INIT_DELAY) {
+ continue;
+ }
+
+ /**
+ * PART TWO: EXECUTE THE FILTER
+ *
+ * We run the filter only once all data has been fetched
+ **/
+
+ if (_baro_init && _gyro_valid && _accel_valid && _mag_valid) {
+
+ float initVelNED[3];
+
+ /* Initialize the filter first */
+ if (!_gps_initialized && _gps.fix_type > 2 && _gps.eph < _parameters.pos_stddev_threshold && _gps.epv < _parameters.pos_stddev_threshold) {
+
+ // GPS is in scaled integers, convert
+ double lat = _gps.lat / 1.0e7;
+ double lon = _gps.lon / 1.0e7;
+ float gps_alt = _gps.alt / 1e3f;
+
+ initVelNED[0] = _gps.vel_n_m_s;
+ initVelNED[1] = _gps.vel_e_m_s;
+ initVelNED[2] = _gps.vel_d_m_s;
+
+ // Set up height correctly
+ orb_copy(ORB_ID(sensor_baro), _baro_sub, &_baro);
+ _baro_ref_offset = _ekf->states[9]; // this should become zero in the local frame
+ _baro_gps_offset = _baro.altitude - gps_alt;
+ _ekf->baroHgt = _baro.altitude;
+ _ekf->hgtMea = 1.0f * (_ekf->baroHgt - (_baro_ref));
+
+ // Set up position variables correctly
+ _ekf->GPSstatus = _gps.fix_type;
+
+ _ekf->gpsLat = math::radians(lat);
+ _ekf->gpsLon = math::radians(lon) - M_PI;
+ _ekf->gpsHgt = gps_alt;
+
+ // Look up mag declination based on current position
+ float declination = math::radians(get_mag_declination(lat, lon));
+
+ _ekf->InitialiseFilter(initVelNED, math::radians(lat), math::radians(lon) - M_PI, gps_alt, declination);
+
+ // Initialize projection
+ _local_pos.ref_lat = lat;
+ _local_pos.ref_lon = lon;
+ _local_pos.ref_alt = gps_alt;
+ _local_pos.ref_timestamp = _gps.timestamp_position;
+
+ map_projection_init(&_pos_ref, lat, lon);
+ mavlink_log_info(_mavlink_fd, "[ekf] ref: LA %.4f,LO %.4f,ALT %.2f", lat, lon, (double)gps_alt);
+
+ #if 0
+ warnx("HOME/REF: LA %8.4f,LO %8.4f,ALT %8.2f V: %8.4f %8.4f %8.4f", lat, lon, (double)gps_alt,
+ (double)_ekf->velNED[0], (double)_ekf->velNED[1], (double)_ekf->velNED[2]);
+ warnx("BARO: %8.4f m / ref: %8.4f m / gps offs: %8.4f m", (double)_ekf->baroHgt, (double)_baro_ref, (double)_baro_ref_offset);
+ warnx("GPS: eph: %8.4f, epv: %8.4f, declination: %8.4f", (double)_gps.eph, (double)_gps.epv, (double)math::degrees(declination));
+ #endif
+
+ _gps_initialized = true;
+
+ } else if (!_ekf->statesInitialised) {
+
+ initVelNED[0] = 0.0f;
+ initVelNED[1] = 0.0f;
+ initVelNED[2] = 0.0f;
+ _ekf->posNE[0] = posNED[0];
+ _ekf->posNE[1] = posNED[1];
+
+ _local_pos.ref_alt = _baro_ref;
+ _baro_ref_offset = 0.0f;
+ _baro_gps_offset = 0.0f;
+
+ _ekf->InitialiseFilter(initVelNED, 0.0, 0.0, 0.0f, 0.0f);
+
+ } else if (_ekf->statesInitialised) {
+
+ // We're apparently initialized in this case now
+ int check = check_filter_state();
+
+ if (check) {
+ // Let the system re-initialize itself
+ continue;
+ }
+
+ // Run the strapdown INS equations every IMU update
+ _ekf->UpdateStrapdownEquationsNED();
+ #if 0
+ // debug code - could be tunred into a filter mnitoring/watchdog function
+ float tempQuat[4];
+
+ for (uint8_t j = 0; j <= 3; j++) tempQuat[j] = states[j];
+
+ quat2eul(eulerEst, tempQuat);
+
+ for (uint8_t j = 0; j <= 2; j++) eulerDif[j] = eulerEst[j] - ahrsEul[j];
+
+ if (eulerDif[2] > pi) eulerDif[2] -= 2 * pi;
+
+ if (eulerDif[2] < -pi) eulerDif[2] += 2 * pi;
+
+ #endif
+ // store the predicted states for subsequent use by measurement fusion
+ _ekf->StoreStates(IMUmsec);
+ // Check if on ground - status is used by covariance prediction
+ _ekf->OnGroundCheck();
+ // sum delta angles and time used by covariance prediction
+ _ekf->summedDelAng = _ekf->summedDelAng + _ekf->correctedDelAng;
+ _ekf->summedDelVel = _ekf->summedDelVel + _ekf->dVelIMU;
+ dt += _ekf->dtIMU;
+
+ // perform a covariance prediction if the total delta angle has exceeded the limit
+ // or the time limit will be exceeded at the next IMU update
+ if ((dt >= (_ekf->covTimeStepMax - _ekf->dtIMU)) || (_ekf->summedDelAng.length() > _ekf->covDelAngMax)) {
+ _ekf->CovariancePrediction(dt);
+ _ekf->summedDelAng.zero();
+ _ekf->summedDelVel.zero();
+ dt = 0.0f;
+ }
+
+ // Fuse GPS Measurements
+ if (newDataGps && _gps_initialized) {
+ // Convert GPS measurements to Pos NE, hgt and Vel NED
+
+ float gps_dt = (_gps.timestamp_position - last_gps) / 1e6f;
+
+ // Calculate acceleration predicted by GPS velocity change
+ if (((fabsf(_ekf->velNED[0] - _gps.vel_n_m_s) > FLT_EPSILON) ||
+ (fabsf(_ekf->velNED[1] - _gps.vel_e_m_s) > FLT_EPSILON) ||
+ (fabsf(_ekf->velNED[2] - _gps.vel_d_m_s) > FLT_EPSILON)) && (gps_dt > 0.00001f)) {
+
+ _ekf->accelGPSNED[0] = (_ekf->velNED[0] - _gps.vel_n_m_s) / gps_dt;
+ _ekf->accelGPSNED[1] = (_ekf->velNED[1] - _gps.vel_e_m_s) / gps_dt;
+ _ekf->accelGPSNED[2] = (_ekf->velNED[2] - _gps.vel_d_m_s) / gps_dt;
+ }
+
+ _ekf->velNED[0] = _gps.vel_n_m_s;
+ _ekf->velNED[1] = _gps.vel_e_m_s;
+ _ekf->velNED[2] = _gps.vel_d_m_s;
+ _ekf->calcposNED(posNED, _ekf->gpsLat, _ekf->gpsLon, _ekf->gpsHgt, _ekf->latRef, _ekf->lonRef, _ekf->hgtRef);
+
+ _ekf->posNE[0] = posNED[0];
+ _ekf->posNE[1] = posNED[1];
+ // set fusion flags
+ _ekf->fuseVelData = true;
+ _ekf->fusePosData = true;
+ // recall states stored at time of measurement after adjusting for delays
+ _ekf->RecallStates(_ekf->statesAtVelTime, (IMUmsec - _parameters.vel_delay_ms));
+ _ekf->RecallStates(_ekf->statesAtPosTime, (IMUmsec - _parameters.pos_delay_ms));
+ // run the fusion step
+ _ekf->FuseVelposNED();
+
+ } else if (!_gps_initialized) {
+
+ // force static mode
+ _ekf->staticMode = true;
+
+ // Convert GPS measurements to Pos NE, hgt and Vel NED
+ _ekf->velNED[0] = 0.0f;
+ _ekf->velNED[1] = 0.0f;
+ _ekf->velNED[2] = 0.0f;
+
+ _ekf->posNE[0] = 0.0f;
+ _ekf->posNE[1] = 0.0f;
+ // set fusion flags
+ _ekf->fuseVelData = true;
+ _ekf->fusePosData = true;
+ // recall states stored at time of measurement after adjusting for delays
+ _ekf->RecallStates(_ekf->statesAtVelTime, (IMUmsec - _parameters.vel_delay_ms));
+ _ekf->RecallStates(_ekf->statesAtPosTime, (IMUmsec - _parameters.pos_delay_ms));
+ // run the fusion step
+ _ekf->FuseVelposNED();
+
+ } else {
+ _ekf->fuseVelData = false;
+ _ekf->fusePosData = false;
+ }
+
+ if (newHgtData) {
+ // Could use a blend of GPS and baro alt data if desired
+ _ekf->hgtMea = 1.0f * (_ekf->baroHgt - _baro_ref);
+ _ekf->fuseHgtData = true;
+ // recall states stored at time of measurement after adjusting for delays
+ _ekf->RecallStates(_ekf->statesAtHgtTime, (IMUmsec - _parameters.height_delay_ms));
+ // run the fusion step
+ _ekf->FuseVelposNED();
+
+ } else {
+ _ekf->fuseHgtData = false;
+ }
+
+ // Fuse Magnetometer Measurements
+ if (newDataMag) {
+ _ekf->fuseMagData = true;
+ _ekf->RecallStates(_ekf->statesAtMagMeasTime, (IMUmsec - _parameters.mag_delay_ms)); // Assume 50 msec avg delay for magnetometer data
+
+ _ekf->magstate.obsIndex = 0;
+ _ekf->FuseMagnetometer();
+ _ekf->FuseMagnetometer();
+ _ekf->FuseMagnetometer();
+
+ } else {
+ _ekf->fuseMagData = false;
+ }
+
+ // Fuse Airspeed Measurements
+ if (newAdsData && _ekf->VtasMeas > 7.0f) {
+ _ekf->fuseVtasData = true;
+ _ekf->RecallStates(_ekf->statesAtVtasMeasTime, (IMUmsec - _parameters.tas_delay_ms)); // assume 100 msec avg delay for airspeed data
+ _ekf->FuseAirspeed();
+
+ } else {
+ _ekf->fuseVtasData = false;
+ }
+
+
+ // Output results
+ math::Quaternion q(_ekf->states[0], _ekf->states[1], _ekf->states[2], _ekf->states[3]);
+ math::Matrix<3, 3> R = q.to_dcm();
+ math::Vector<3> euler = R.to_euler();
+
+ for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++)
+ _att.R[i][j] = R(i, j);
+
+ _att.timestamp = _last_sensor_timestamp;
+ _att.q[0] = _ekf->states[0];
+ _att.q[1] = _ekf->states[1];
+ _att.q[2] = _ekf->states[2];
+ _att.q[3] = _ekf->states[3];
+ _att.q_valid = true;
+ _att.R_valid = true;
+
+ _att.timestamp = _last_sensor_timestamp;
+ _att.roll = euler(0);
+ _att.pitch = euler(1);
+ _att.yaw = euler(2);
+
+ _att.rollspeed = _ekf->angRate.x - _ekf->states[10];
+ _att.pitchspeed = _ekf->angRate.y - _ekf->states[11];
+ _att.yawspeed = _ekf->angRate.z - _ekf->states[12];
+ // gyro offsets
+ _att.rate_offsets[0] = _ekf->states[10];
+ _att.rate_offsets[1] = _ekf->states[11];
+ _att.rate_offsets[2] = _ekf->states[12];
+
+ /* lazily publish the attitude only once available */
+ if (_att_pub > 0) {
+ /* publish the attitude setpoint */
+ orb_publish(ORB_ID(vehicle_attitude), _att_pub, &_att);
+
+ } else {
+ /* advertise and publish */
+ _att_pub = orb_advertise(ORB_ID(vehicle_attitude), &_att);
+ }
+
+ if (_gps_initialized) {
+ _local_pos.timestamp = _last_sensor_timestamp;
+ _local_pos.x = _ekf->states[7];
+ _local_pos.y = _ekf->states[8];
+ // XXX need to announce change of Z reference somehow elegantly
+ _local_pos.z = _ekf->states[9] - _baro_ref_offset;
+
+ _local_pos.vx = _ekf->states[4];
+ _local_pos.vy = _ekf->states[5];
+ _local_pos.vz = _ekf->states[6];
+
+ _local_pos.xy_valid = _gps_initialized;
+ _local_pos.z_valid = true;
+ _local_pos.v_xy_valid = _gps_initialized;
+ _local_pos.v_z_valid = true;
+ _local_pos.xy_global = true;
+
+ _velocity_xy_filtered = 0.95f*_velocity_xy_filtered + 0.05f*sqrtf(_local_pos.vx*_local_pos.vx + _local_pos.vy*_local_pos.vy);
+ _velocity_z_filtered = 0.95f*_velocity_z_filtered + 0.05f*fabsf(_local_pos.vz);
+ _airspeed_filtered = 0.95f*_airspeed_filtered + 0.05f*_airspeed.true_airspeed_m_s;
+
+
+ /* crude land detector for fixedwing only,
+ * TODO: adapt so that it works for both, maybe move to another location
+ */
+ if (_velocity_xy_filtered < 5
+ && _velocity_z_filtered < 10
+ && _airspeed_filtered < 10) {
+ _local_pos.landed = true;
+ } else {
+ _local_pos.landed = false;
+ }
+
+ _local_pos.z_global = false;
+ _local_pos.yaw = _att.yaw;
+
+ /* lazily publish the local position only once available */
+ if (_local_pos_pub > 0) {
+ /* publish the attitude setpoint */
+ orb_publish(ORB_ID(vehicle_local_position), _local_pos_pub, &_local_pos);
+
+ } else {
+ /* advertise and publish */
+ _local_pos_pub = orb_advertise(ORB_ID(vehicle_local_position), &_local_pos);
+ }
+
+ _global_pos.timestamp = _local_pos.timestamp;
+
+ if (_local_pos.xy_global) {
+ double est_lat, est_lon;
+ map_projection_reproject(&_pos_ref, _local_pos.x, _local_pos.y, &est_lat, &est_lon);
+ _global_pos.lat = est_lat;
+ _global_pos.lon = est_lon;
+ _global_pos.time_gps_usec = _gps.time_gps_usec;
+ _global_pos.eph = _gps.eph;
+ _global_pos.epv = _gps.epv;
+ }
+
+ if (_local_pos.v_xy_valid) {
+ _global_pos.vel_n = _local_pos.vx;
+ _global_pos.vel_e = _local_pos.vy;
+ } else {
+ _global_pos.vel_n = 0.0f;
+ _global_pos.vel_e = 0.0f;
+ }
+
+ /* local pos alt is negative, change sign and add alt offsets */
+ _global_pos.alt = _baro_ref + (-_local_pos.z) - _baro_gps_offset;
+
+ if (_local_pos.v_z_valid) {
+ _global_pos.vel_d = _local_pos.vz;
+ }
+
+
+ _global_pos.yaw = _local_pos.yaw;
+
+ _global_pos.eph = _gps.eph;
+ _global_pos.epv = _gps.epv;
+
+ _global_pos.timestamp = _local_pos.timestamp;
+
+ /* lazily publish the global position only once available */
+ if (_global_pos_pub > 0) {
+ /* publish the global position */
+ orb_publish(ORB_ID(vehicle_global_position), _global_pos_pub, &_global_pos);
+
+ } else {
+ /* advertise and publish */
+ _global_pos_pub = orb_advertise(ORB_ID(vehicle_global_position), &_global_pos);
+ }
+
+ if (hrt_elapsed_time(&_wind.timestamp) > 99000) {
+ _wind.timestamp = _global_pos.timestamp;
+ _wind.windspeed_north = _ekf->states[14];
+ _wind.windspeed_east = _ekf->states[15];
+ _wind.covariance_north = 0.0f; // XXX get form filter
+ _wind.covariance_east = 0.0f;
+
+ /* lazily publish the wind estimate only once available */
+ if (_wind_pub > 0) {
+ /* publish the wind estimate */
+ orb_publish(ORB_ID(wind_estimate), _wind_pub, &_wind);
+
+ } else {
+ /* advertise and publish */
+ _wind_pub = orb_advertise(ORB_ID(wind_estimate), &_wind);
+ }
+
+ }
+
+ if (hrt_elapsed_time(&_wind.timestamp) > 99000) {
+ _wind.timestamp = _global_pos.timestamp;
+ _wind.windspeed_north = _ekf->states[14];
+ _wind.windspeed_east = _ekf->states[15];
+ _wind.covariance_north = _ekf->P[14][14];
+ _wind.covariance_east = _ekf->P[15][15];
+
+ /* lazily publish the wind estimate only once available */
+ if (_wind_pub > 0) {
+ /* publish the wind estimate */
+ orb_publish(ORB_ID(wind_estimate), _wind_pub, &_wind);
+
+ } else {
+ /* advertise and publish */
+ _wind_pub = orb_advertise(ORB_ID(wind_estimate), &_wind);
+ }
+ }
+
+ }
+
+ }
+
+ }
+
+ }
+
+ perf_end(_loop_perf);
+ }
+
+ _task_running = false;
+
+ warnx("exiting.\n");
+
+ _estimator_task = -1;
+ _exit(0);
+}
+
+int
+FixedwingEstimator::start()
+{
+ ASSERT(_estimator_task == -1);
+
+ /* start the task */
+ _estimator_task = task_spawn_cmd("ekf_att_pos_estimator",
+ SCHED_DEFAULT,
+ SCHED_PRIORITY_MAX - 40,
+ 5000,
+ (main_t)&FixedwingEstimator::task_main_trampoline,
+ nullptr);
+
+ if (_estimator_task < 0) {
+ warn("task start failed");
+ return -errno;
+ }
+
+ return OK;
+}
+
+void
+FixedwingEstimator::print_status()
+{
+ math::Quaternion q(_ekf->states[0], _ekf->states[1], _ekf->states[2], _ekf->states[3]);
+ math::Matrix<3, 3> R = q.to_dcm();
+ math::Vector<3> euler = R.to_euler();
+
+ printf("attitude: roll: %8.4f, pitch %8.4f, yaw: %8.4f degrees\n",
+ (double)math::degrees(euler(0)), (double)math::degrees(euler(1)), (double)math::degrees(euler(2)));
+
+ // State vector:
+ // 0-3: quaternions (q0, q1, q2, q3)
+ // 4-6: Velocity - m/sec (North, East, Down)
+ // 7-9: Position - m (North, East, Down)
+ // 10-12: Delta Angle bias - rad (X,Y,Z)
+ // 13: Accelerometer offset
+ // 14-15: Wind Vector - m/sec (North,East)
+ // 16-18: Earth Magnetic Field Vector - gauss (North, East, Down)
+ // 19-21: Body Magnetic Field Vector - gauss (X,Y,Z)
+
+ printf("dtIMU: %8.6f IMUmsec: %d\n", (double)_ekf->dtIMU, (int)IMUmsec);
+ printf("baro alt: %8.4f GPS alt: %8.4f\n", (double)_baro.altitude, (double)(_gps.alt / 1e3f));
+ printf("ref alt: %8.4f baro ref offset: %8.4f baro GPS offset: %8.4f\n", (double)_baro_ref, (double)_baro_ref_offset, (double)_baro_gps_offset);
+ printf("dvel: %8.6f %8.6f %8.6f accel: %8.6f %8.6f %8.6f\n", (double)_ekf->dVelIMU.x, (double)_ekf->dVelIMU.y, (double)_ekf->dVelIMU.z, (double)_ekf->accel.x, (double)_ekf->accel.y, (double)_ekf->accel.z);
+ printf("dang: %8.4f %8.4f %8.4f dang corr: %8.4f %8.4f %8.4f\n" , (double)_ekf->dAngIMU.x, (double)_ekf->dAngIMU.y, (double)_ekf->dAngIMU.z, (double)_ekf->correctedDelAng.x, (double)_ekf->correctedDelAng.y, (double)_ekf->correctedDelAng.z);
+ printf("states (quat) [0-3]: %8.4f, %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[0], (double)_ekf->states[1], (double)_ekf->states[2], (double)_ekf->states[3]);
+ printf("states (vel m/s) [4-6]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[4], (double)_ekf->states[5], (double)_ekf->states[6]);
+ printf("states (pos m) [7-9]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[7], (double)_ekf->states[8], (double)_ekf->states[9]);
+ printf("states (delta ang) [10-12]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[10], (double)_ekf->states[11], (double)_ekf->states[12]);
+
+ if (n_states == 23) {
+ printf("states (accel offs) [13]: %8.4f\n", (double)_ekf->states[13]);
+ printf("states (wind) [14-15]: %8.4f, %8.4f\n", (double)_ekf->states[14], (double)_ekf->states[15]);
+ printf("states (earth mag) [16-18]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[16], (double)_ekf->states[17], (double)_ekf->states[18]);
+ printf("states (body mag) [19-21]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[19], (double)_ekf->states[20], (double)_ekf->states[21]);
+ printf("states (terrain) [22]: %8.4f\n", (double)_ekf->states[22]);
+
+ } else {
+ printf("states (wind) [13-14]: %8.4f, %8.4f\n", (double)_ekf->states[13], (double)_ekf->states[14]);
+ printf("states (earth mag) [15-17]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[15], (double)_ekf->states[16], (double)_ekf->states[17]);
+ printf("states (body mag) [18-20]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[18], (double)_ekf->states[19], (double)_ekf->states[20]);
+ }
+ printf("states: %s %s %s %s %s %s %s %s %s %s\n",
+ (_ekf->statesInitialised) ? "INITIALIZED" : "NON_INIT",
+ (_ekf->onGround) ? "ON_GROUND" : "AIRBORNE",
+ (_ekf->fuseVelData) ? "FUSE_VEL" : "INH_VEL",
+ (_ekf->fusePosData) ? "FUSE_POS" : "INH_POS",
+ (_ekf->fuseHgtData) ? "FUSE_HGT" : "INH_HGT",
+ (_ekf->fuseMagData) ? "FUSE_MAG" : "INH_MAG",
+ (_ekf->fuseVtasData) ? "FUSE_VTAS" : "INH_VTAS",
+ (_ekf->useAirspeed) ? "USE_AIRSPD" : "IGN_AIRSPD",
+ (_ekf->useCompass) ? "USE_COMPASS" : "IGN_COMPASS",
+ (_ekf->staticMode) ? "STATIC_MODE" : "DYNAMIC_MODE");
+}
+
+int FixedwingEstimator::trip_nan() {
+
+ int ret = 0;
+
+ // If system is not armed, inject a NaN value into the filter
+ int armed_sub = orb_subscribe(ORB_ID(actuator_armed));
+
+ struct actuator_armed_s armed;
+ orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
+
+ if (armed.armed) {
+ warnx("ACTUATORS ARMED! NOT TRIPPING SYSTEM");
+ ret = 1;
+ } else {
+
+ float nan_val = 0.0f / 0.0f;
+
+ warnx("system not armed, tripping state vector with NaN values");
+ _ekf->states[5] = nan_val;
+ usleep(100000);
+
+ warnx("tripping covariance #1 with NaN values");
+ _ekf->KH[2][2] = nan_val; // intermediate result used for covariance updates
+ usleep(100000);
+
+ warnx("tripping covariance #2 with NaN values");
+ _ekf->KHP[5][5] = nan_val; // intermediate result used for covariance updates
+ usleep(100000);
+
+ warnx("tripping covariance #3 with NaN values");
+ _ekf->P[3][3] = nan_val; // covariance matrix
+ usleep(100000);
+
+ warnx("tripping Kalman gains with NaN values");
+ _ekf->Kfusion[0] = nan_val; // Kalman gains
+ usleep(100000);
+
+ warnx("tripping stored states[0] with NaN values");
+ _ekf->storedStates[0][0] = nan_val;
+ usleep(100000);
+
+ warnx("\nDONE - FILTER STATE:");
+ print_status();
+ }
+
+ close(armed_sub);
+ return ret;
+}
+
+int ekf_att_pos_estimator_main(int argc, char *argv[])
+{
+ if (argc < 1)
+ errx(1, "usage: ekf_att_pos_estimator {start|stop|status|logging}");
+
+ if (!strcmp(argv[1], "start")) {
+
+ if (estimator::g_estimator != nullptr)
+ errx(1, "already running");
+
+ estimator::g_estimator = new FixedwingEstimator;
+
+ if (estimator::g_estimator == nullptr)
+ errx(1, "alloc failed");
+
+ if (OK != estimator::g_estimator->start()) {
+ delete estimator::g_estimator;
+ estimator::g_estimator = nullptr;
+ err(1, "start failed");
+ }
+
+ /* avoid memory fragmentation by not exiting start handler until the task has fully started */
+ while (estimator::g_estimator == nullptr || !estimator::g_estimator->task_running()) {
+ usleep(50000);
+ printf(".");
+ fflush(stdout);
+ }
+ printf("\n");
+
+ exit(0);
+ }
+
+ if (!strcmp(argv[1], "stop")) {
+ if (estimator::g_estimator == nullptr)
+ errx(1, "not running");
+
+ delete estimator::g_estimator;
+ estimator::g_estimator = nullptr;
+ exit(0);
+ }
+
+ if (!strcmp(argv[1], "status")) {
+ if (estimator::g_estimator) {
+ warnx("running");
+
+ estimator::g_estimator->print_status();
+
+ exit(0);
+
+ } else {
+ errx(1, "not running");
+ }
+ }
+
+ if (!strcmp(argv[1], "trip")) {
+ if (estimator::g_estimator) {
+ int ret = estimator::g_estimator->trip_nan();
+
+ exit(ret);
+
+ } else {
+ errx(1, "not running");
+ }
+ }
+
+ if (!strcmp(argv[1], "logging")) {
+ if (estimator::g_estimator) {
+ int ret = estimator::g_estimator->enable_logging(true);
+
+ exit(ret);
+
+ } else {
+ errx(1, "not running");
+ }
+ }
+
+ if (!strcmp(argv[1], "debug")) {
+ if (estimator::g_estimator) {
+ int debug = strtoul(argv[2], NULL, 10);
+ int ret = estimator::g_estimator->set_debuglevel(debug);
+
+ exit(ret);
+
+ } else {
+ errx(1, "not running");
+ }
+ }
+
+ warnx("unrecognized command");
+ return 1;
+}