aboutsummaryrefslogtreecommitdiff
path: root/src/modules/ekf_att_pos_estimator/estimator_22states.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/ekf_att_pos_estimator/estimator_22states.h')
-rw-r--r--src/modules/ekf_att_pos_estimator/estimator_22states.h365
1 files changed, 365 insertions, 0 deletions
diff --git a/src/modules/ekf_att_pos_estimator/estimator_22states.h b/src/modules/ekf_att_pos_estimator/estimator_22states.h
new file mode 100644
index 000000000..b1d71bd74
--- /dev/null
+++ b/src/modules/ekf_att_pos_estimator/estimator_22states.h
@@ -0,0 +1,365 @@
+#pragma once
+
+#include "estimator_utilities.h"
+
+const unsigned int n_states = 22;
+const unsigned int data_buffer_size = 50;
+
+class AttPosEKF {
+
+public:
+
+ AttPosEKF();
+ ~AttPosEKF();
+
+
+
+ /* ##############################################
+ *
+ * M A I N F I L T E R P A R A M E T E R S
+ *
+ * ########################################### */
+
+ /*
+ * parameters are defined here and initialised in
+ * the InitialiseParameters() (which is just 20 lines down)
+ */
+
+ float covTimeStepMax; // maximum time allowed between covariance predictions
+ float covDelAngMax; // maximum delta angle between covariance predictions
+ float rngFinderPitch; // pitch angle of laser range finder in radians. Zero is aligned with the Z body axis. Positive is RH rotation about Y body axis.
+
+ float yawVarScale;
+ float windVelSigma;
+ float dAngBiasSigma;
+ float dVelBiasSigma;
+ float magEarthSigma;
+ float magBodySigma;
+ float gndHgtSigma;
+
+ float vneSigma;
+ float vdSigma;
+ float posNeSigma;
+ float posDSigma;
+ float magMeasurementSigma;
+ float airspeedMeasurementSigma;
+
+ float gyroProcessNoise;
+ float accelProcessNoise;
+
+ float EAS2TAS; // ratio f true to equivalent airspeed
+
+ void InitialiseParameters()
+ {
+ covTimeStepMax = 0.07f; // maximum time allowed between covariance predictions
+ covDelAngMax = 0.02f; // maximum delta angle between covariance predictions
+ rngFinderPitch = 0.0f; // pitch angle of laser range finder in radians. Zero is aligned with the Z body axis. Positive is RH rotation about Y body axis.
+ EAS2TAS = 1.0f;
+
+ yawVarScale = 1.0f;
+ windVelSigma = 0.1f;
+ dAngBiasSigma = 5.0e-7f;
+ dVelBiasSigma = 1e-4f;
+ magEarthSigma = 3.0e-4f;
+ magBodySigma = 3.0e-4f;
+
+ vneSigma = 0.2f;
+ vdSigma = 0.3f;
+ posNeSigma = 2.0f;
+ posDSigma = 2.0f;
+
+ magMeasurementSigma = 0.05;
+ airspeedMeasurementSigma = 1.4f;
+ gyroProcessNoise = 1.4544411e-2f;
+ accelProcessNoise = 0.5f;
+
+ gndHgtSigma = 0.1f; // terrain gradient 1-sigma
+ R_LOS = 0.3f; // optical flow measurement noise variance (rad/sec)^2
+ flowInnovGate = 3.0f; // number of standard deviations applied to the optical flow innovation consistency check
+ auxFlowInnovGate = 10.0f; // number of standard deviations applied to the optical flow innovation consistency check used by the auxiliary filter
+ rngInnovGate = 5.0f; // number of standard deviations applied to the range finder innovation consistency check
+ minFlowRng = 0.3f; //minimum range between ground and flow sensor
+ moCompR_LOS = 0.0; // scaler from sensor gyro rate to uncertainty in LOS rate
+
+ }
+
+ struct mag_state_struct {
+ unsigned obsIndex;
+ float MagPred[3];
+ float SH_MAG[9];
+ float q0;
+ float q1;
+ float q2;
+ float q3;
+ float magN;
+ float magE;
+ float magD;
+ float magXbias;
+ float magYbias;
+ float magZbias;
+ float R_MAG;
+ Mat3f DCM;
+ };
+
+ struct mag_state_struct magstate;
+ struct mag_state_struct resetMagState;
+
+
+
+
+ // Global variables
+ float KH[n_states][n_states]; // intermediate result used for covariance updates
+ float KHP[n_states][n_states]; // intermediate result used for covariance updates
+ float P[n_states][n_states]; // covariance matrix
+ float Kfusion[n_states]; // Kalman gains
+ float states[n_states]; // state matrix
+ float resetStates[n_states];
+ float storedStates[n_states][data_buffer_size]; // state vectors stored for the last 50 time steps
+ uint32_t statetimeStamp[data_buffer_size]; // time stamp for each state vector stored
+
+ // Times
+ uint64_t lastVelPosFusion; // the time of the last velocity fusion, in the standard time unit of the filter
+
+ float statesAtVelTime[n_states]; // States at the effective measurement time for posNE and velNED measurements
+ float statesAtPosTime[n_states]; // States at the effective measurement time for posNE and velNED measurements
+ float statesAtHgtTime[n_states]; // States at the effective measurement time for the hgtMea measurement
+ float statesAtMagMeasTime[n_states]; // filter satates at the effective measurement time
+ float statesAtVtasMeasTime[n_states]; // filter states at the effective measurement time
+ float statesAtRngTime[n_states]; // filter states at the effective measurement time
+ float statesAtFlowTime[n_states]; // States at the effective optical flow measurement time
+ float omegaAcrossFlowTime[3]; // angular rates at the effective optical flow measurement time
+
+ Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
+ Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
+ Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
+ Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
+ float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2)
+ Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
+ Vector3f angRate; // angular rate vector in XYZ body axes measured by the IMU (rad/s)
+ Vector3f lastGyroOffset; // Last gyro offset
+ Vector3f delAngTotal;
+
+ Mat3f Tbn; // transformation matrix from body to NED coordinatesFuseOptFlow
+ Mat3f Tnb; // transformation amtrix from NED to body coordinates
+
+ Vector3f accel; // acceleration vector in XYZ body axes measured by the IMU (m/s^2)
+ Vector3f dVelIMU;
+ Vector3f dAngIMU;
+ float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec), this may have significant jitter
+ float dtIMUfilt; // average time between IMU measurements (sec)
+ float dtVelPos; // time lapsed since the last position / velocity fusion (seconds), this may have significant jitter
+ float dtVelPosFilt; // average time between position / velocity fusion steps
+ float dtHgtFilt; // average time between height measurement updates
+ float dtGpsFilt; // average time between gps measurement updates
+ uint8_t fusionModeGPS; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
+ float innovVelPos[6]; // innovation output
+ float varInnovVelPos[6]; // innovation variance output
+
+ float velNED[3]; // North, East, Down velocity obs (m/s)
+ float accelGPSNED[3]; // Acceleration predicted by GPS in earth frame
+ float posNE[2]; // North, East position obs (m)
+ float hgtMea; // measured height (m)
+ float baroHgtOffset; ///< the baro (weather) offset from normalized altitude
+ float rngMea; // Ground distance
+
+ float innovMag[3]; // innovation output
+ float varInnovMag[3]; // innovation variance output
+ Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
+ float flowRadXYcomp[2]; // motion compensated optical flow angular rates(rad/sec)
+ float flowRadXY[2]; // raw (non motion compensated) optical flow angular rates (rad/sec)
+ float innovVtas; // innovation output
+ float innovRng; ///< Range finder innovation
+ float innovOptFlow[2]; // optical flow LOS innovations (rad/sec)
+ float varInnovOptFlow[2]; // optical flow innovations variances (rad/sec)^2
+ float varInnovVtas; // innovation variance output
+ float varInnovRng; // range finder innovation variance
+ float VtasMeas; // true airspeed measurement (m/s)
+ float magDeclination; ///< magnetic declination
+ double latRef; // WGS-84 latitude of reference point (rad)
+ double lonRef; // WGS-84 longitude of reference point (rad)
+ float hgtRef; // WGS-84 height of reference point (m)
+ bool refSet; ///< flag to indicate if the reference position has been set
+ Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes
+ unsigned covSkipCount; // Number of state prediction frames (IMU daya updates to skip before doing the covariance prediction
+ uint32_t lastFixTime_ms; // Number of msec since last GPS Fix that was used
+ uint32_t globalTimeStamp_ms; // time in msec of current prediction cycle
+
+ // GPS input data variables
+ double gpsLat;
+ double gpsLon;
+ float gpsHgt;
+ uint8_t GPSstatus;
+
+ // Baro input
+ float baroHgt;
+
+ bool statesInitialised;
+
+ bool fuseVelData; // this boolean causes the posNE and velNED obs to be fused
+ bool fusePosData; // this boolean causes the posNE and velNED obs to be fused
+ bool fuseHgtData; // this boolean causes the hgtMea obs to be fused
+ bool fuseMagData; // boolean true when magnetometer data is to be fused
+ bool fuseVtasData; // boolean true when airspeed data is to be fused
+ bool fuseRngData; ///< true when range data is fused
+ bool fuseOptFlowData; // true when optical flow data is fused
+
+ bool inhibitWindStates; // true when wind states and covariances are to remain constant
+ bool inhibitMagStates; // true when magnetic field states and covariances are to remain constant
+ bool inhibitGndState; // true when the terrain ground height offset state and covariances are to remain constant
+ bool inhibitScaleState; // true when the focal length scale factor state and covariances are to remain constant
+
+ bool onGround; ///< boolean true when the flight vehicle is on the ground (not flying)
+ bool staticMode; ///< boolean true if no position feedback is fused
+ bool useGPS; // boolean true if GPS data is being used
+ bool useAirspeed; ///< boolean true if airspeed data is being used
+ bool useCompass; ///< boolean true if magnetometer data is being used
+ bool useRangeFinder; ///< true when rangefinder is being used
+ bool useOpticalFlow; // true when optical flow data is being used
+
+ bool ekfDiverged;
+ uint64_t lastReset;
+
+ struct ekf_status_report current_ekf_state;
+ struct ekf_status_report last_ekf_error;
+
+ bool numericalProtection;
+
+ unsigned storeIndex;
+
+ // Optical Flow error estimation
+ float storedOmega[3][data_buffer_size]; // angular rate vector stored for the last 50 time steps used by optical flow eror estimators
+
+ // Two state EKF used to estimate focal length scale factor and terrain position
+ float Popt[2][2]; // state covariance matrix
+ float flowStates[2]; // flow states [scale factor, terrain position]
+ float prevPosN; // north position at last measurement
+ float prevPosE; // east position at last measurement
+ float auxFlowObsInnov[2]; // optical flow observation innovations from focal length scale factor estimator
+ float auxFlowObsInnovVar[2]; // innovation variance for optical flow observations from focal length scale factor estimator
+ float fScaleFactorVar; // optical flow sensor focal length scale factor variance
+ Mat3f Tnb_flow; // Transformation matrix from nav to body at the time fo the optical flow measurement
+ float R_LOS; // Optical flow observation noise variance (rad/sec)^2
+ float auxFlowTestRatio[2]; // ratio of X and Y flow observation innovations to fault threshold
+ float auxRngTestRatio; // ratio of range observation innovations to fault threshold
+ float flowInnovGate; // number of standard deviations used for the innovation consistency check
+ float auxFlowInnovGate; // number of standard deviations applied to the optical flow innovation consistency check
+ float rngInnovGate; // number of standard deviations used for the innovation consistency check
+ float minFlowRng; // minimum range over which to fuse optical flow measurements
+ float moCompR_LOS; // scaler from sensor gyro rate to uncertainty in LOS rate
+
+void updateDtGpsFilt(float dt);
+
+void updateDtHgtFilt(float dt);
+
+void UpdateStrapdownEquationsNED();
+
+void CovariancePrediction(float dt);
+
+void FuseVelposNED();
+
+void FuseMagnetometer();
+
+void FuseAirspeed();
+
+void FuseOptFlow();
+
+void OpticalFlowEKF();
+
+void zeroRows(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last);
+
+void zeroCols(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last);
+
+void quatNorm(float (&quatOut)[4], const float quatIn[4]);
+
+// store staes along with system time stamp in msces
+void StoreStates(uint64_t timestamp_ms);
+
+/**
+ * Recall the state vector.
+ *
+ * Recalls the vector stored at closest time to the one specified by msec
+ *FuseOptFlow
+ * @return zero on success, integer indicating the number of invalid states on failure.
+ * Does only copy valid states, if the statesForFusion vector was initialized
+ * correctly by the caller, the result can be safely used, but is a mixture
+ * time-wise where valid states were updated and invalid remained at the old
+ * value.
+ */
+int RecallStates(float *statesForFusion, uint64_t msec);
+
+void RecallOmega(float *omegaForFusion, uint64_t msec);
+
+void ResetStoredStates();
+
+void quat2Tbn(Mat3f &TBodyNed, const float (&quat)[4]);
+
+void calcEarthRateNED(Vector3f &omega, float latitude);
+
+static void eul2quat(float (&quat)[4], const float (&eul)[3]);
+
+static void quat2eul(float (&eul)[3], const float (&quat)[4]);
+
+static void calcvelNED(float (&velNED)[3], float gpsCourse, float gpsGndSpd, float gpsVelD);
+
+void calcposNED(float (&posNED)[3], double lat, double lon, float hgt, double latRef, double lonRef, float hgtRef);
+
+static void calcLLH(float posNED[3], double &lat, double &lon, float &hgt, double latRef, double lonRef, float hgtRef);
+
+static void quat2Tnb(Mat3f &Tnb, const float (&quat)[4]);
+
+static float sq(float valIn);
+
+static float maxf(float valIn1, float valIn2);
+
+static float min(float valIn1, float valIn2);
+
+void OnGroundCheck();
+
+void CovarianceInit();
+
+void InitialiseFilter(float (&initvelNED)[3], double referenceLat, double referenceLon, float referenceHgt, float declination);
+
+float ConstrainFloat(float val, float min, float maxf);
+
+void ConstrainVariances();
+
+void ConstrainStates();
+
+void ForceSymmetry();
+
+int CheckAndBound(struct ekf_status_report *last_error);
+
+void ResetPosition();
+
+void ResetVelocity();
+
+void ZeroVariables();
+
+void GetFilterState(struct ekf_status_report *state);
+
+void GetLastErrorState(struct ekf_status_report *last_error);
+
+bool StatesNaN();
+
+void InitializeDynamic(float (&initvelNED)[3], float declination);
+
+protected:
+
+void updateDtVelPosFilt(float dt);
+
+bool FilterHealthy();
+
+bool GyroOffsetsDiverged();
+
+bool VelNEDDiverged();
+
+void ResetHeight(void);
+
+void AttitudeInit(float ax, float ay, float az, float mx, float my, float mz, float declination, float *initQuat);
+
+};
+
+uint32_t millis();
+
+uint64_t getMicros();
+