aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mc_att_control/mc_att_control_base.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/mc_att_control/mc_att_control_base.cpp')
-rw-r--r--src/modules/mc_att_control/mc_att_control_base.cpp403
1 files changed, 403 insertions, 0 deletions
diff --git a/src/modules/mc_att_control/mc_att_control_base.cpp b/src/modules/mc_att_control/mc_att_control_base.cpp
new file mode 100644
index 000000000..baf2bfe65
--- /dev/null
+++ b/src/modules/mc_att_control/mc_att_control_base.cpp
@@ -0,0 +1,403 @@
+/* Copyright (c) 2014 PX4 Development Team. All rights reserved.
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+*
+* 1. Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* 2. Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* 3. Neither the name PX4 nor the names of its contributors may be
+* used to endorse or promote products derived from this software
+* without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+*
+****************************************************************************/
+
+/**
+ * @file mc_att_control_base.h
+ *
+ * @author Roman Bapst <bapstr@ethz.ch>
+ *
+ */
+
+#include "mc_att_control_base.h"
+#include <geo/geo.h>
+#include <math.h>
+
+#ifdef CONFIG_ARCH_ARM
+#else
+#include <cmath>
+using namespace std;
+#endif
+
+MulticopterAttitudeControlBase::MulticopterAttitudeControlBase() :
+
+ _task_should_exit(false), _control_task(-1),
+
+ _actuators_0_circuit_breaker_enabled(false),
+
+ /* performance counters */
+ _loop_perf(perf_alloc(PC_ELAPSED, "mc_att_control"))
+
+{
+ memset(&_v_att, 0, sizeof(_v_att));
+ memset(&_v_att_sp, 0, sizeof(_v_att_sp));
+ memset(&_v_rates_sp, 0, sizeof(_v_rates_sp));
+ memset(&_manual_control_sp, 0, sizeof(_manual_control_sp));
+ memset(&_v_control_mode, 0, sizeof(_v_control_mode));
+ memset(&_actuators, 0, sizeof(_actuators));
+ memset(&_armed, 0, sizeof(_armed));
+
+ _params.att_p.zero();
+ _params.rate_p.zero();
+ _params.rate_i.zero();
+ _params.rate_d.zero();
+ _params.yaw_ff = 0.0f;
+ _params.yaw_rate_max = 0.0f;
+ _params.man_roll_max = 0.0f;
+ _params.man_pitch_max = 0.0f;
+ _params.man_yaw_max = 0.0f;
+ _params.acro_rate_max.zero();
+
+ _rates_prev.zero();
+ _rates_sp.zero();
+ _rates_int.zero();
+ _thrust_sp = 0.0f;
+ _att_control.zero();
+
+ _I.identity();
+
+ // setup standard gains
+ _params.att_p(0) = 5.0;
+ _params.rate_p(0) = 0.05;
+ _params.rate_i(0) = 0.0;
+ _params.rate_d(0) = 0.003;
+ /* pitch gains */
+ _params.att_p(1) = 5.0;
+ _params.rate_p(1) = 0.05;
+ _params.rate_i(1) = 0.0;
+ _params.rate_d(1) = 0.003;
+ /* yaw gains */
+ _params.att_p(2) = 2.8;
+ _params.rate_p(2) = 0.2;
+ _params.rate_i(2) = 0.1;
+ _params.rate_d(2) = 0.0;
+ _params.yaw_rate_max = 0.5;
+ _params.yaw_ff = 0.5;
+ _params.man_roll_max = 0.6;
+ _params.man_pitch_max = 0.6;
+ _params.man_yaw_max = 0.6;
+}
+
+MulticopterAttitudeControlBase::~MulticopterAttitudeControlBase() {
+}
+
+void MulticopterAttitudeControlBase::vehicle_attitude_setpoint_poll() {
+}
+
+void MulticopterAttitudeControlBase::control_attitude(float dt) {
+ float yaw_sp_move_rate = 0.0f;
+ bool publish_att_sp = false;
+
+ if (_v_control_mode.flag_control_manual_enabled) {
+ /* manual input, set or modify attitude setpoint */
+
+ if (_v_control_mode.flag_control_velocity_enabled
+ || _v_control_mode.flag_control_climb_rate_enabled) {
+ /* in assisted modes poll 'vehicle_attitude_setpoint' topic and modify it */
+ vehicle_attitude_setpoint_poll();
+ }
+
+ if (!_v_control_mode.flag_control_climb_rate_enabled) {
+ /* pass throttle directly if not in altitude stabilized mode */
+ _v_att_sp.thrust = _manual_control_sp.z;
+ publish_att_sp = true;
+ }
+
+ if (!_armed.armed) {
+ /* reset yaw setpoint when disarmed */
+ _reset_yaw_sp = true;
+ }
+
+ /* move yaw setpoint in all modes */
+ if (_v_att_sp.thrust < 0.1f) {
+ // TODO
+ //if (_status.condition_landed) {
+ /* reset yaw setpoint if on ground */
+ // reset_yaw_sp = true;
+ //}
+ } else {
+ /* move yaw setpoint */
+ yaw_sp_move_rate = _manual_control_sp.r * _params.man_yaw_max;
+ _v_att_sp.yaw_body = _wrap_pi(
+ _v_att_sp.yaw_body + yaw_sp_move_rate * dt);
+ float yaw_offs_max = _params.man_yaw_max / _params.att_p(2);
+ float yaw_offs = _wrap_pi(_v_att_sp.yaw_body - _v_att.yaw);
+ if (yaw_offs < -yaw_offs_max) {
+ _v_att_sp.yaw_body = _wrap_pi(_v_att.yaw - yaw_offs_max);
+
+ } else if (yaw_offs > yaw_offs_max) {
+ _v_att_sp.yaw_body = _wrap_pi(_v_att.yaw + yaw_offs_max);
+ }
+ _v_att_sp.R_valid = false;
+ publish_att_sp = true;
+ }
+
+ /* reset yaw setpint to current position if needed */
+ if (_reset_yaw_sp) {
+ _reset_yaw_sp = false;
+ _v_att_sp.yaw_body = _v_att.yaw;
+ _v_att_sp.R_valid = false;
+ publish_att_sp = true;
+ }
+
+ if (!_v_control_mode.flag_control_velocity_enabled) {
+ /* update attitude setpoint if not in position control mode */
+ _v_att_sp.roll_body = _manual_control_sp.y * _params.man_roll_max;
+ _v_att_sp.pitch_body = -_manual_control_sp.x
+ * _params.man_pitch_max;
+ _v_att_sp.R_valid = false;
+ publish_att_sp = true;
+ }
+
+ } else {
+ /* in non-manual mode use 'vehicle_attitude_setpoint' topic */
+ vehicle_attitude_setpoint_poll();
+
+ /* reset yaw setpoint after non-manual control mode */
+ _reset_yaw_sp = true;
+ }
+
+ _thrust_sp = _v_att_sp.thrust;
+
+ /* construct attitude setpoint rotation matrix */
+ math::Matrix<3, 3> R_sp;
+
+ if (_v_att_sp.R_valid) {
+ /* rotation matrix in _att_sp is valid, use it */
+ R_sp.set(&_v_att_sp.R_body[0][0]);
+
+ } else {
+ /* rotation matrix in _att_sp is not valid, use euler angles instead */
+ R_sp.from_euler(_v_att_sp.roll_body, _v_att_sp.pitch_body,
+ _v_att_sp.yaw_body);
+
+ /* copy rotation matrix back to setpoint struct */
+ memcpy(&_v_att_sp.R_body[0][0], &R_sp.data[0][0],
+ sizeof(_v_att_sp.R_body));
+ _v_att_sp.R_valid = true;
+ }
+
+// /* publish the attitude setpoint if needed */
+// if (publish_att_sp) {
+// _v_att_sp.timestamp = hrt_absolute_time();
+//
+// if (_att_sp_pub > 0) {
+// orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub,
+// &_v_att_sp);
+//
+// } else {
+// _att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint),
+// &_v_att_sp);
+// }
+// }
+
+ /* rotation matrix for current state */
+ math::Matrix<3, 3> R;
+ R.set(_v_att.R);
+
+ /* all input data is ready, run controller itself */
+
+ /* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */
+ math::Vector < 3 > R_z(R(0, 2), R(1, 2), R(2, 2));
+ math::Vector < 3 > R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));
+
+ /* axis and sin(angle) of desired rotation */
+ math::Vector < 3 > e_R = R.transposed() * (R_z % R_sp_z);
+
+ /* calculate angle error */
+ float e_R_z_sin = e_R.length();
+ float e_R_z_cos = R_z * R_sp_z;
+
+ /* calculate weight for yaw control */
+ float yaw_w = R_sp(2, 2) * R_sp(2, 2);
+
+ /* calculate rotation matrix after roll/pitch only rotation */
+ math::Matrix<3, 3> R_rp;
+
+ if (e_R_z_sin > 0.0f) {
+ /* get axis-angle representation */
+ float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos);
+ math::Vector < 3 > e_R_z_axis = e_R / e_R_z_sin;
+
+ e_R = e_R_z_axis * e_R_z_angle;
+
+ /* cross product matrix for e_R_axis */
+ math::Matrix<3, 3> e_R_cp;
+ e_R_cp.zero();
+ e_R_cp(0, 1) = -e_R_z_axis(2);
+ e_R_cp(0, 2) = e_R_z_axis(1);
+ e_R_cp(1, 0) = e_R_z_axis(2);
+ e_R_cp(1, 2) = -e_R_z_axis(0);
+ e_R_cp(2, 0) = -e_R_z_axis(1);
+ e_R_cp(2, 1) = e_R_z_axis(0);
+
+ /* rotation matrix for roll/pitch only rotation */
+ R_rp = R
+ * (_I + e_R_cp * e_R_z_sin
+ + e_R_cp * e_R_cp * (1.0f - e_R_z_cos));
+
+ } else {
+ /* zero roll/pitch rotation */
+ R_rp = R;
+ }
+
+ /* R_rp and R_sp has the same Z axis, calculate yaw error */
+ math::Vector < 3 > R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
+ math::Vector < 3 > R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
+ e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w;
+
+ if (e_R_z_cos < 0.0f) {
+ /* for large thrust vector rotations use another rotation method:
+ * calculate angle and axis for R -> R_sp rotation directly */
+ math::Quaternion q;
+ q.from_dcm(R.transposed() * R_sp);
+ math::Vector < 3 > e_R_d = q.imag();
+ e_R_d.normalize();
+ e_R_d *= 2.0f * atan2f(e_R_d.length(), q(0));
+
+ /* use fusion of Z axis based rotation and direct rotation */
+ float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
+ e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
+ }
+
+ /* calculate angular rates setpoint */
+ _rates_sp = _params.att_p.emult(e_R);
+
+ /* limit yaw rate */
+ _rates_sp(2) = math::constrain(_rates_sp(2), -_params.yaw_rate_max,
+ _params.yaw_rate_max);
+
+ /* feed forward yaw setpoint rate */
+ _rates_sp(2) += yaw_sp_move_rate * yaw_w * _params.yaw_ff;
+}
+
+void MulticopterAttitudeControlBase::control_attitude_rates(float dt) {
+ /* reset integral if disarmed */
+ if (!_armed.armed) {
+ _rates_int.zero();
+ }
+
+ /* current body angular rates */
+ math::Vector < 3 > rates;
+ rates(0) = _v_att.rollspeed;
+ rates(1) = _v_att.pitchspeed;
+ rates(2) = _v_att.yawspeed;
+
+ /* angular rates error */
+ math::Vector < 3 > rates_err = _rates_sp - rates;
+ _att_control = _params.rate_p.emult(rates_err)
+ + _params.rate_d.emult(_rates_prev - rates) / dt + _rates_int;
+ _rates_prev = rates;
+
+ /* update integral only if not saturated on low limit */
+ if (_thrust_sp > MIN_TAKEOFF_THRUST) {
+ for (int i = 0; i < 3; i++) {
+ if (fabsf(_att_control(i)) < _thrust_sp) {
+ float rate_i = _rates_int(i)
+ + _params.rate_i(i) * rates_err(i) * dt;
+
+ if (isfinite(
+ rate_i) && rate_i > -RATES_I_LIMIT && rate_i < RATES_I_LIMIT &&
+ _att_control(i) > -RATES_I_LIMIT && _att_control(i) < RATES_I_LIMIT) {
+ _rates_int(i) = rate_i;
+ }
+ }
+ }
+ }
+
+}
+
+void MulticopterAttitudeControlBase::set_actuator_controls() {
+ _actuators.control[0] = (isfinite(_att_control(0))) ? _att_control(0) : 0.0f;
+ _actuators.control[1] = (isfinite(_att_control(1))) ? _att_control(1) : 0.0f;
+ _actuators.control[2] = (isfinite(_att_control(2))) ? _att_control(2) : 0.0f;
+ _actuators.control[3] = (isfinite(_thrust_sp)) ? _thrust_sp : 0.0f;
+}
+
+void MulticopterAttitudeControlBase::set_attitude(const Eigen::Quaternion<double> attitude) {
+ math::Quaternion quat;
+ quat(0) = (float)attitude.w();
+ quat(1) = (float)attitude.x();
+ quat(2) = (float)attitude.y();
+ quat(3) = (float)attitude.z();
+
+ _v_att.q[0] = quat(0);
+ _v_att.q[1] = quat(1);
+ _v_att.q[2] = quat(2);
+ _v_att.q[3] = quat(3);
+
+ math::Matrix<3,3> Rot = quat.to_dcm();
+ _v_att.R[0][0] = Rot(0,0);
+ _v_att.R[1][0] = Rot(1,0);
+ _v_att.R[2][0] = Rot(2,0);
+ _v_att.R[0][1] = Rot(0,1);
+ _v_att.R[1][1] = Rot(1,1);
+ _v_att.R[2][1] = Rot(2,1);
+ _v_att.R[0][2] = Rot(0,2);
+ _v_att.R[1][2] = Rot(1,2);
+ _v_att.R[2][2] = Rot(2,2);
+
+ _v_att.R_valid = true;
+}
+
+void MulticopterAttitudeControlBase::set_attitude_rates(const Eigen::Vector3d& angular_rate) {
+ // check if this is consistent !!!
+ _v_att.rollspeed = angular_rate(0);
+ _v_att.pitchspeed = angular_rate(1);
+ _v_att.yawspeed = angular_rate(2);
+}
+
+void MulticopterAttitudeControlBase::set_attitude_reference(const Eigen::Vector4d& control_attitude_thrust_reference) {
+ _v_att_sp.roll_body = control_attitude_thrust_reference(0);
+ _v_att_sp.pitch_body = control_attitude_thrust_reference(1);
+ _v_att_sp.yaw_body = control_attitude_thrust_reference(2);
+ _v_att_sp.thrust = (control_attitude_thrust_reference(3) -30)*(-1)/30;
+
+ // setup rotation matrix
+ math::Matrix<3,3> Rot_sp;
+ Rot_sp.from_euler(_v_att_sp.roll_body,_v_att_sp.pitch_body,_v_att_sp.yaw_body);
+ _v_att_sp.R_body[0][0] = Rot_sp(0,0);
+ _v_att_sp.R_body[1][0] = Rot_sp(1,0);
+ _v_att_sp.R_body[2][0] = Rot_sp(2,0);
+ _v_att_sp.R_body[0][1] = Rot_sp(0,1);
+ _v_att_sp.R_body[1][1] = Rot_sp(1,1);
+ _v_att_sp.R_body[2][1] = Rot_sp(2,1);
+ _v_att_sp.R_body[0][2] = Rot_sp(0,2);
+ _v_att_sp.R_body[1][2] = Rot_sp(1,2);
+ _v_att_sp.R_body[2][2] = Rot_sp(2,2);
+}
+
+void MulticopterAttitudeControlBase::get_mixer_input(Eigen::Vector4d& motor_inputs) {
+ motor_inputs(0) = _actuators.control[0];
+ motor_inputs(1) = _actuators.control[1];
+ motor_inputs(2) = _actuators.control[2];
+ motor_inputs(3) = _actuators.control[3];
+}
+