aboutsummaryrefslogtreecommitdiff
path: root/src/modules/position_estimator_inav/position_estimator_inav_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/position_estimator_inav/position_estimator_inav_main.c')
-rw-r--r--src/modules/position_estimator_inav/position_estimator_inav_main.c892
1 files changed, 649 insertions, 243 deletions
diff --git a/src/modules/position_estimator_inav/position_estimator_inav_main.c b/src/modules/position_estimator_inav/position_estimator_inav_main.c
index 3084b6d92..05eae047c 100644
--- a/src/modules/position_estimator_inav/position_estimator_inav_main.c
+++ b/src/modules/position_estimator_inav/position_estimator_inav_main.c
@@ -1,7 +1,6 @@
/****************************************************************************
*
- * Copyright (C) 2013 Anton Babushkin. All rights reserved.
- * Author: Anton Babushkin <rk3dov@gmail.com>
+ * Copyright (C) 2013, 2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@@ -35,6 +34,8 @@
/**
* @file position_estimator_inav_main.c
* Model-identification based position estimator for multirotors
+ *
+ * @author Anton Babushkin <anton.babushkin@me.com>
*/
#include <unistd.h>
@@ -42,15 +43,13 @@
#include <stdio.h>
#include <stdbool.h>
#include <fcntl.h>
-#include <float.h>
#include <string.h>
#include <nuttx/config.h>
#include <nuttx/sched.h>
#include <sys/prctl.h>
#include <termios.h>
-#include <errno.h>
-#include <limits.h>
#include <math.h>
+#include <float.h>
#include <uORB/uORB.h>
#include <uORB/topics/parameter_update.h>
#include <uORB/topics/actuator_controls.h>
@@ -60,6 +59,7 @@
#include <uORB/topics/vehicle_local_position.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/vehicle_gps_position.h>
+#include <uORB/topics/home_position.h>
#include <uORB/topics/optical_flow.h>
#include <mavlink/mavlink_log.h>
#include <poll.h>
@@ -71,15 +71,22 @@
#include "position_estimator_inav_params.h"
#include "inertial_filter.h"
+#define MIN_VALID_W 0.00001f
+#define PUB_INTERVAL 10000 // limit publish rate to 100 Hz
+#define EST_BUF_SIZE 250000 / PUB_INTERVAL // buffer size is 0.5s
+
static bool thread_should_exit = false; /**< Deamon exit flag */
static bool thread_running = false; /**< Deamon status flag */
static int position_estimator_inav_task; /**< Handle of deamon task / thread */
static bool verbose_mode = false;
-static const hrt_abstime gps_timeout = 1000000; // GPS timeout = 1s
-static const hrt_abstime flow_timeout = 1000000; // optical flow timeout = 1s
+static const hrt_abstime gps_topic_timeout = 500000; // GPS topic timeout = 0.5s
+static const hrt_abstime flow_topic_timeout = 1000000; // optical flow topic timeout = 1s
+static const hrt_abstime sonar_timeout = 150000; // sonar timeout = 150ms
+static const hrt_abstime sonar_valid_timeout = 1000000; // estimate sonar distance during this time after sonar loss
+static const hrt_abstime xy_src_timeout = 2000000; // estimate position during this time after position sources loss
static const uint32_t updates_counter_len = 1000000;
-static const uint32_t pub_interval = 4000; // limit publish rate to 250 Hz
+static const float max_flow = 1.0f; // max flow value that can be used, rad/s
__EXPORT int position_estimator_inav_main(int argc, char *argv[]);
@@ -87,16 +94,26 @@ int position_estimator_inav_thread_main(int argc, char *argv[]);
static void usage(const char *reason);
+static inline int min(int val1, int val2)
+{
+ return (val1 < val2) ? val1 : val2;
+}
+
+static inline int max(int val1, int val2)
+{
+ return (val1 > val2) ? val1 : val2;
+}
+
/**
* Print the correct usage.
*/
static void usage(const char *reason)
{
- if (reason)
+ if (reason) {
fprintf(stderr, "%s\n", reason);
+ }
- fprintf(stderr,
- "usage: position_estimator_inav {start|stop|status} [-v]\n\n");
+ fprintf(stderr, "usage: position_estimator_inav {start|stop|status} [-v]\n\n");
exit(1);
}
@@ -110,12 +127,13 @@ static void usage(const char *reason)
*/
int position_estimator_inav_main(int argc, char *argv[])
{
- if (argc < 1)
+ if (argc < 1) {
usage("missing command");
+ }
if (!strcmp(argv[1], "start")) {
if (thread_running) {
- printf("position_estimator_inav already running\n");
+ warnx("already running");
/* this is not an error */
exit(0);
}
@@ -123,28 +141,36 @@ int position_estimator_inav_main(int argc, char *argv[])
verbose_mode = false;
if (argc > 1)
- if (!strcmp(argv[2], "-v"))
+ if (!strcmp(argv[2], "-v")) {
verbose_mode = true;
+ }
thread_should_exit = false;
position_estimator_inav_task = task_spawn_cmd("position_estimator_inav",
- SCHED_RR, SCHED_PRIORITY_MAX - 5, 4096,
+ SCHED_DEFAULT, SCHED_PRIORITY_MAX - 5, 5000,
position_estimator_inav_thread_main,
(argv) ? (const char **) &argv[2] : (const char **) NULL);
exit(0);
}
if (!strcmp(argv[1], "stop")) {
- thread_should_exit = true;
+ if (thread_running) {
+ warnx("stop");
+ thread_should_exit = true;
+
+ } else {
+ warnx("app not started");
+ }
+
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (thread_running) {
- printf("\tposition_estimator_inav is running\n");
+ warnx("app is running");
} else {
- printf("\tposition_estimator_inav not started\n");
+ warnx("app not started");
}
exit(0);
@@ -154,31 +180,120 @@ int position_estimator_inav_main(int argc, char *argv[])
exit(1);
}
+static void write_debug_log(const char *msg, float dt, float x_est[2], float y_est[2], float z_est[2], float x_est_prev[2], float y_est_prev[2], float z_est_prev[2], float acc[3], float corr_gps[3][2], float w_xy_gps_p, float w_xy_gps_v)
+{
+ FILE *f = fopen("/fs/microsd/inav.log", "a");
+
+ if (f) {
+ char *s = malloc(256);
+ unsigned n = snprintf(s, 256, "%llu %s\n\tdt=%.5f x_est=[%.5f %.5f] y_est=[%.5f %.5f] z_est=[%.5f %.5f] x_est_prev=[%.5f %.5f] y_est_prev=[%.5f %.5f] z_est_prev=[%.5f %.5f]\n",
+ hrt_absolute_time(), msg, (double)dt,
+ (double)x_est[0], (double)x_est[1], (double)y_est[0], (double)y_est[1], (double)z_est[0], (double)z_est[1],
+ (double)x_est_prev[0], (double)x_est_prev[1], (double)y_est_prev[0], (double)y_est_prev[1], (double)z_est_prev[0], (double)z_est_prev[1]);
+ fwrite(s, 1, n, f);
+ n = snprintf(s, 256, "\tacc=[%.5f %.5f %.5f] gps_pos_corr=[%.5f %.5f %.5f] gps_vel_corr=[%.5f %.5f %.5f] w_xy_gps_p=%.5f w_xy_gps_v=%.5f\n",
+ (double)acc[0], (double)acc[1], (double)acc[2],
+ (double)corr_gps[0][0], (double)corr_gps[1][0], (double)corr_gps[2][0], (double)corr_gps[0][1], (double)corr_gps[1][1], (double)corr_gps[2][1],
+ (double)w_xy_gps_p, (double)w_xy_gps_v);
+ fwrite(s, 1, n, f);
+ free(s);
+ }
+
+ fsync(fileno(f));
+ fclose(f);
+}
+
/****************************************************************************
* main
****************************************************************************/
int position_estimator_inav_thread_main(int argc, char *argv[])
{
- warnx("started.");
+ warnx("started");
int mavlink_fd;
mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
mavlink_log_info(mavlink_fd, "[inav] started");
- /* initialize values */
- float x_est[3] = { 0.0f, 0.0f, 0.0f };
- float y_est[3] = { 0.0f, 0.0f, 0.0f };
- float z_est[3] = { 0.0f, 0.0f, 0.0f };
+ float x_est[2] = { 0.0f, 0.0f }; // pos, vel
+ float y_est[2] = { 0.0f, 0.0f }; // pos, vel
+ float z_est[2] = { 0.0f, 0.0f }; // pos, vel
+
+ float est_buf[EST_BUF_SIZE][3][2]; // estimated position buffer
+ float R_buf[EST_BUF_SIZE][3][3]; // rotation matrix buffer
+ float R_gps[3][3]; // rotation matrix for GPS correction moment
+ memset(est_buf, 0, sizeof(est_buf));
+ memset(R_buf, 0, sizeof(R_buf));
+ memset(R_gps, 0, sizeof(R_gps));
+ int buf_ptr = 0;
+
+ static const float min_eph_epv = 2.0f; // min EPH/EPV, used for weight calculation
+ static const float max_eph_epv = 20.0f; // max EPH/EPV acceptable for estimation
+
+ float eph = max_eph_epv;
+ float epv = 1.0f;
+
+ float eph_flow = 1.0f;
+
+ float x_est_prev[2], y_est_prev[2], z_est_prev[2];
+ memset(x_est_prev, 0, sizeof(x_est_prev));
+ memset(y_est_prev, 0, sizeof(y_est_prev));
+ memset(z_est_prev, 0, sizeof(z_est_prev));
int baro_init_cnt = 0;
int baro_init_num = 200;
- float baro_alt0 = 0.0f; /* to determine while start up */
+ float baro_offset = 0.0f; // baro offset for reference altitude, initialized on start, then adjusted
+ float surface_offset = 0.0f; // ground level offset from reference altitude
+ float surface_offset_rate = 0.0f; // surface offset change rate
float alt_avg = 0.0f;
bool landed = true;
hrt_abstime landed_time = 0;
- bool flag_armed = false;
- uint32_t accel_counter = 0;
- uint32_t baro_counter = 0;
+ hrt_abstime accel_timestamp = 0;
+ hrt_abstime baro_timestamp = 0;
+
+ bool ref_inited = false;
+ hrt_abstime ref_init_start = 0;
+ const hrt_abstime ref_init_delay = 1000000; // wait for 1s after 3D fix
+ struct map_projection_reference_s ref;
+ memset(&ref, 0, sizeof(ref));
+ hrt_abstime home_timestamp = 0;
+
+ uint16_t accel_updates = 0;
+ uint16_t baro_updates = 0;
+ uint16_t gps_updates = 0;
+ uint16_t attitude_updates = 0;
+ uint16_t flow_updates = 0;
+
+ hrt_abstime updates_counter_start = hrt_absolute_time();
+ hrt_abstime pub_last = hrt_absolute_time();
+
+ hrt_abstime t_prev = 0;
+
+ /* store error when sensor updates, but correct on each time step to avoid jumps in estimated value */
+ float acc[] = { 0.0f, 0.0f, 0.0f }; // N E D
+ float acc_bias[] = { 0.0f, 0.0f, 0.0f }; // body frame
+ float corr_baro = 0.0f; // D
+ float corr_gps[3][2] = {
+ { 0.0f, 0.0f }, // N (pos, vel)
+ { 0.0f, 0.0f }, // E (pos, vel)
+ { 0.0f, 0.0f }, // D (pos, vel)
+ };
+ float w_gps_xy = 1.0f;
+ float w_gps_z = 1.0f;
+ float corr_sonar = 0.0f;
+ float corr_sonar_filtered = 0.0f;
+
+ float corr_flow[] = { 0.0f, 0.0f }; // N E
+ float w_flow = 0.0f;
+
+ float sonar_prev = 0.0f;
+ hrt_abstime flow_prev = 0; // time of last flow measurement
+ hrt_abstime sonar_time = 0; // time of last sonar measurement (not filtered)
+ hrt_abstime sonar_valid_time = 0; // time of last sonar measurement used for correction (filtered)
+
+ bool gps_valid = false; // GPS is valid
+ bool sonar_valid = false; // sonar is valid
+ bool flow_valid = false; // flow is valid
+ bool flow_accurate = false; // flow should be accurate (this flag not updated if flow_valid == false)
/* declare and safely initialize all structs */
struct actuator_controls_s actuator;
@@ -189,6 +304,8 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
memset(&sensor, 0, sizeof(sensor));
struct vehicle_gps_position_s gps;
memset(&gps, 0, sizeof(gps));
+ struct home_position_s home;
+ memset(&home, 0, sizeof(home));
struct vehicle_attitude_s att;
memset(&att, 0, sizeof(att));
struct vehicle_local_position_s local_pos;
@@ -206,10 +323,11 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
int vehicle_attitude_sub = orb_subscribe(ORB_ID(vehicle_attitude));
int optical_flow_sub = orb_subscribe(ORB_ID(optical_flow));
int vehicle_gps_position_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
+ int home_position_sub = orb_subscribe(ORB_ID(home_position));
/* advertise */
orb_advert_t vehicle_local_position_pub = orb_advertise(ORB_ID(vehicle_local_position), &local_pos);
- orb_advert_t vehicle_global_position_pub = orb_advertise(ORB_ID(vehicle_global_position), &global_pos);
+ orb_advert_t vehicle_global_position_pub = -1;
struct position_estimator_inav_params params;
struct position_estimator_inav_param_handles pos_inav_param_handles;
@@ -242,80 +360,36 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
if (fds_init[0].revents & POLLIN) {
orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor);
- if (wait_baro && sensor.baro_counter != baro_counter) {
- baro_counter = sensor.baro_counter;
+ if (wait_baro && sensor.baro_timestamp != baro_timestamp) {
+ baro_timestamp = sensor.baro_timestamp;
/* mean calculation over several measurements */
if (baro_init_cnt < baro_init_num) {
- baro_alt0 += sensor.baro_alt_meter;
- baro_init_cnt++;
+ if (isfinite(sensor.baro_alt_meter)) {
+ baro_offset += sensor.baro_alt_meter;
+ baro_init_cnt++;
+ }
} else {
wait_baro = false;
- baro_alt0 /= (float) baro_init_cnt;
- warnx("init baro: alt = %.3f", baro_alt0);
- mavlink_log_info(mavlink_fd, "[inav] init baro: alt = %.3f", baro_alt0);
- local_pos.ref_alt = baro_alt0;
- local_pos.ref_timestamp = hrt_absolute_time();
+ baro_offset /= (float) baro_init_cnt;
+ warnx("baro offs: %.2f", (double)baro_offset);
+ mavlink_log_info(mavlink_fd, "[inav] baro offs: %.2f", (double)baro_offset);
local_pos.z_valid = true;
local_pos.v_z_valid = true;
- local_pos.z_global = true;
}
}
}
}
}
- bool ref_xy_inited = false;
- hrt_abstime ref_xy_init_start = 0;
- const hrt_abstime ref_xy_init_delay = 5000000; // wait for 5s after 3D fix
-
- hrt_abstime t_prev = 0;
-
- uint16_t accel_updates = 0;
- uint16_t baro_updates = 0;
- uint16_t gps_updates = 0;
- uint16_t attitude_updates = 0;
- uint16_t flow_updates = 0;
-
- hrt_abstime updates_counter_start = hrt_absolute_time();
- hrt_abstime pub_last = hrt_absolute_time();
-
- /* acceleration in NED frame */
- float accel_NED[3] = { 0.0f, 0.0f, -CONSTANTS_ONE_G };
-
- /* store error when sensor updates, but correct on each time step to avoid jumps in estimated value */
- float accel_corr[] = { 0.0f, 0.0f, 0.0f }; // N E D
- float accel_bias[] = { 0.0f, 0.0f, 0.0f }; // body frame
- float baro_corr = 0.0f; // D
- float gps_corr[2][2] = {
- { 0.0f, 0.0f }, // N (pos, vel)
- { 0.0f, 0.0f }, // E (pos, vel)
- };
- float sonar_corr = 0.0f;
- float sonar_corr_filtered = 0.0f;
- float flow_corr[] = { 0.0f, 0.0f }; // X, Y
-
- float sonar_prev = 0.0f;
- hrt_abstime sonar_time = 0;
-
/* main loop */
- struct pollfd fds[7] = {
- { .fd = parameter_update_sub, .events = POLLIN },
- { .fd = actuator_sub, .events = POLLIN },
- { .fd = armed_sub, .events = POLLIN },
+ struct pollfd fds[1] = {
{ .fd = vehicle_attitude_sub, .events = POLLIN },
- { .fd = sensor_combined_sub, .events = POLLIN },
- { .fd = optical_flow_sub, .events = POLLIN },
- { .fd = vehicle_gps_position_sub, .events = POLLIN }
};
- if (!thread_should_exit) {
- warnx("main loop started.");
- }
-
while (!thread_should_exit) {
- int ret = poll(fds, 7, 10); // wait maximal this 10 ms = 100 Hz minimum rate
+ int ret = poll(fds, 1, 20); // wait maximal 20 ms = 50 Hz minimum rate
hrt_abstime t = hrt_absolute_time();
if (ret < 0) {
@@ -324,237 +398,548 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
continue;
} else if (ret > 0) {
+ /* act on attitude updates */
+
+ /* vehicle attitude */
+ orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att);
+ attitude_updates++;
+
+ bool updated;
+
/* parameter update */
- if (fds[0].revents & POLLIN) {
- /* read from param to clear updated flag */
+ orb_check(parameter_update_sub, &updated);
+
+ if (updated) {
struct parameter_update_s update;
- orb_copy(ORB_ID(parameter_update), parameter_update_sub,
- &update);
- /* update parameters */
+ orb_copy(ORB_ID(parameter_update), parameter_update_sub, &update);
parameters_update(&pos_inav_param_handles, &params);
}
/* actuator */
- if (fds[1].revents & POLLIN) {
+ orb_check(actuator_sub, &updated);
+
+ if (updated) {
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_sub, &actuator);
}
/* armed */
- if (fds[2].revents & POLLIN) {
- orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
- }
+ orb_check(armed_sub, &updated);
- /* vehicle attitude */
- if (fds[3].revents & POLLIN) {
- orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att);
- attitude_updates++;
+ if (updated) {
+ orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
}
/* sensor combined */
- if (fds[4].revents & POLLIN) {
+ orb_check(sensor_combined_sub, &updated);
+
+ if (updated) {
orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor);
- if (sensor.accelerometer_counter != accel_counter) {
+ if (sensor.accelerometer_timestamp != accel_timestamp) {
if (att.R_valid) {
- /* correct accel bias, now only for Z */
- sensor.accelerometer_m_s2[2] -= accel_bias[2];
+ /* correct accel bias */
+ sensor.accelerometer_m_s2[0] -= acc_bias[0];
+ sensor.accelerometer_m_s2[1] -= acc_bias[1];
+ sensor.accelerometer_m_s2[2] -= acc_bias[2];
/* transform acceleration vector from body frame to NED frame */
for (int i = 0; i < 3; i++) {
- accel_NED[i] = 0.0f;
+ acc[i] = 0.0f;
for (int j = 0; j < 3; j++) {
- accel_NED[i] += att.R[i][j] * sensor.accelerometer_m_s2[j];
+ acc[i] += att.R[i][j] * sensor.accelerometer_m_s2[j];
}
}
- accel_corr[0] = accel_NED[0] - x_est[2];
- accel_corr[1] = accel_NED[1] - y_est[2];
- accel_corr[2] = accel_NED[2] + CONSTANTS_ONE_G - z_est[2];
+ acc[2] += CONSTANTS_ONE_G;
} else {
- memset(accel_corr, 0, sizeof(accel_corr));
+ memset(acc, 0, sizeof(acc));
}
- accel_counter = sensor.accelerometer_counter;
+ accel_timestamp = sensor.accelerometer_timestamp;
accel_updates++;
}
- if (sensor.baro_counter != baro_counter) {
- baro_corr = - sensor.baro_alt_meter - z_est[0];
- baro_counter = sensor.baro_counter;
+ if (sensor.baro_timestamp != baro_timestamp) {
+ corr_baro = baro_offset - sensor.baro_alt_meter - z_est[0];
+ baro_timestamp = sensor.baro_timestamp;
baro_updates++;
}
}
/* optical flow */
- if (fds[5].revents & POLLIN) {
+ orb_check(optical_flow_sub, &updated);
+
+ if (updated) {
orb_copy(ORB_ID(optical_flow), optical_flow_sub, &flow);
- if (flow.ground_distance_m > 0.31f && flow.ground_distance_m < 4.0f && (flow.ground_distance_m != sonar_prev || t - sonar_time < 150000)) {
- if (flow.ground_distance_m != sonar_prev) {
- sonar_time = t;
- sonar_prev = flow.ground_distance_m;
- sonar_corr = -flow.ground_distance_m - z_est[0];
- sonar_corr_filtered += (sonar_corr - sonar_corr_filtered) * params.sonar_filt;
-
- if (fabsf(sonar_corr) > params.sonar_err) {
- // correction is too large: spike or new ground level?
- if (fabsf(sonar_corr - sonar_corr_filtered) > params.sonar_err) {
- // spike detected, ignore
- sonar_corr = 0.0f;
-
- } else {
- // new ground level
- baro_alt0 += sonar_corr;
- mavlink_log_info(mavlink_fd, "[inav] new home: alt = %.3f", baro_alt0);
- local_pos.ref_alt = baro_alt0;
- local_pos.ref_timestamp = hrt_absolute_time();
- z_est[0] += sonar_corr;
- sonar_corr = 0.0f;
- sonar_corr_filtered = 0.0f;
- }
+ /* calculate time from previous update */
+ float flow_dt = flow_prev > 0 ? (flow.flow_timestamp - flow_prev) * 1e-6f : 0.1f;
+ flow_prev = flow.flow_timestamp;
+
+ if ((flow.ground_distance_m > 0.31f) &&
+ (flow.ground_distance_m < 4.0f) &&
+ (att.R[2][2] > 0.7f) &&
+ (fabsf(flow.ground_distance_m - sonar_prev) > FLT_EPSILON)) {
+
+ sonar_time = t;
+ sonar_prev = flow.ground_distance_m;
+ corr_sonar = flow.ground_distance_m + surface_offset + z_est[0];
+ corr_sonar_filtered += (corr_sonar - corr_sonar_filtered) * params.sonar_filt;
+
+ if (fabsf(corr_sonar) > params.sonar_err) {
+ /* correction is too large: spike or new ground level? */
+ if (fabsf(corr_sonar - corr_sonar_filtered) > params.sonar_err) {
+ /* spike detected, ignore */
+ corr_sonar = 0.0f;
+ sonar_valid = false;
+
+ } else {
+ /* new ground level */
+ surface_offset -= corr_sonar;
+ surface_offset_rate = 0.0f;
+ corr_sonar = 0.0f;
+ corr_sonar_filtered = 0.0f;
+ sonar_valid_time = t;
+ sonar_valid = true;
+ local_pos.surface_bottom_timestamp = t;
+ mavlink_log_info(mavlink_fd, "[inav] new surface level: %.2f", (double)surface_offset);
+ }
+
+ } else {
+ /* correction is ok, use it */
+ sonar_valid_time = t;
+ sonar_valid = true;
+ }
+ }
+
+ float flow_q = flow.quality / 255.0f;
+ float dist_bottom = - z_est[0] - surface_offset;
+
+ if (dist_bottom > 0.3f && flow_q > params.flow_q_min && (t < sonar_valid_time + sonar_valid_timeout) && att.R[2][2] > 0.7f) {
+ /* distance to surface */
+ float flow_dist = dist_bottom / att.R[2][2];
+ /* check if flow if too large for accurate measurements */
+ /* calculate estimated velocity in body frame */
+ float body_v_est[2] = { 0.0f, 0.0f };
+
+ for (int i = 0; i < 2; i++) {
+ body_v_est[i] = att.R[0][i] * x_est[1] + att.R[1][i] * y_est[1] + att.R[2][i] * z_est[1];
+ }
+
+ /* set this flag if flow should be accurate according to current velocity and attitude rate estimate */
+ flow_accurate = fabsf(body_v_est[1] / flow_dist - att.rollspeed) < max_flow &&
+ fabsf(body_v_est[0] / flow_dist + att.pitchspeed) < max_flow;
+
+ /* convert raw flow to angular flow (rad/s) */
+ float flow_ang[2];
+ flow_ang[0] = flow.flow_raw_x * params.flow_k / 1000.0f / flow_dt;
+ flow_ang[1] = flow.flow_raw_y * params.flow_k / 1000.0f / flow_dt;
+ /* flow measurements vector */
+ float flow_m[3];
+ flow_m[0] = -flow_ang[0] * flow_dist;
+ flow_m[1] = -flow_ang[1] * flow_dist;
+ flow_m[2] = z_est[1];
+ /* velocity in NED */
+ float flow_v[2] = { 0.0f, 0.0f };
+
+ /* project measurements vector to NED basis, skip Z component */
+ for (int i = 0; i < 2; i++) {
+ for (int j = 0; j < 3; j++) {
+ flow_v[i] += att.R[i][j] * flow_m[j];
}
}
+ /* velocity correction */
+ corr_flow[0] = flow_v[0] - x_est[1];
+ corr_flow[1] = flow_v[1] - y_est[1];
+ /* adjust correction weight */
+ float flow_q_weight = (flow_q - params.flow_q_min) / (1.0f - params.flow_q_min);
+ w_flow = att.R[2][2] * flow_q_weight / fmaxf(1.0f, flow_dist);
+
+ /* if flow is not accurate, reduce weight for it */
+ // TODO make this more fuzzy
+ if (!flow_accurate) {
+ w_flow *= 0.05f;
+ }
+
+ /* under ideal conditions, on 1m distance assume EPH = 10cm */
+ eph_flow = 0.1f / w_flow;
+
+ flow_valid = true;
+
} else {
- sonar_corr = 0.0f;
+ w_flow = 0.0f;
+ flow_valid = false;
}
flow_updates++;
}
+ /* home position */
+ orb_check(home_position_sub, &updated);
+
+ if (updated) {
+ orb_copy(ORB_ID(home_position), home_position_sub, &home);
+
+ if (home.timestamp != home_timestamp) {
+ home_timestamp = home.timestamp;
+
+ double est_lat, est_lon;
+ float est_alt;
+
+ if (ref_inited) {
+ /* calculate current estimated position in global frame */
+ est_alt = local_pos.ref_alt - local_pos.z;
+ map_projection_reproject(&ref, local_pos.x, local_pos.y, &est_lat, &est_lon);
+ }
+
+ /* update reference */
+ map_projection_init(&ref, home.lat, home.lon);
+
+ /* update baro offset */
+ baro_offset += home.alt - local_pos.ref_alt;
+
+ local_pos.ref_lat = home.lat;
+ local_pos.ref_lon = home.lon;
+ local_pos.ref_alt = home.alt;
+ local_pos.ref_timestamp = home.timestamp;
+
+ if (ref_inited) {
+ /* reproject position estimate with new reference */
+ map_projection_project(&ref, est_lat, est_lon, &x_est[0], &y_est[0]);
+ z_est[0] = -(est_alt - local_pos.ref_alt);
+ }
+
+ ref_inited = true;
+ }
+ }
+
/* vehicle GPS position */
- if (fds[6].revents & POLLIN) {
+ orb_check(vehicle_gps_position_sub, &updated);
+
+ if (updated) {
orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_position_sub, &gps);
- if (gps.fix_type >= 3 && t < gps.timestamp_position + gps_timeout) {
+ bool reset_est = false;
+
+ /* hysteresis for GPS quality */
+ if (gps_valid) {
+ if (gps.eph > max_eph_epv || gps.epv > max_eph_epv || gps.fix_type < 3) {
+ gps_valid = false;
+ mavlink_log_info(mavlink_fd, "[inav] GPS signal lost");
+ }
+
+ } else {
+ if (gps.eph < max_eph_epv * 0.7f && gps.epv < max_eph_epv * 0.7f && gps.fix_type >= 3) {
+ gps_valid = true;
+ reset_est = true;
+ mavlink_log_info(mavlink_fd, "[inav] GPS signal found");
+ }
+ }
+
+ if (gps_valid) {
+ double lat = gps.lat * 1e-7;
+ double lon = gps.lon * 1e-7;
+ float alt = gps.alt * 1e-3;
+
/* initialize reference position if needed */
- if (!ref_xy_inited) {
- /* require EPH < 10m */
- if (gps.eph_m < 10.0f) {
- if (ref_xy_init_start == 0) {
- ref_xy_init_start = t;
-
- } else if (t > ref_xy_init_start + ref_xy_init_delay) {
- ref_xy_inited = true;
- /* reference GPS position */
- double lat = gps.lat * 1e-7;
- double lon = gps.lon * 1e-7;
-
- local_pos.ref_lat = gps.lat;
- local_pos.ref_lon = gps.lon;
- local_pos.ref_timestamp = t;
-
- /* initialize projection */
- map_projection_init(lat, lon);
- warnx("init GPS: lat = %.10f, lon = %.10f", lat, lon);
- mavlink_log_info(mavlink_fd, "[inav] init GPS: %.7f, %.7f", lat, lon);
- }
- } else {
- ref_xy_init_start = 0;
+ if (!ref_inited) {
+ if (ref_init_start == 0) {
+ ref_init_start = t;
+
+ } else if (t > ref_init_start + ref_init_delay) {
+ ref_inited = true;
+
+ /* set position estimate to (0, 0, 0), use GPS velocity for XY */
+ x_est[0] = 0.0f;
+ x_est[1] = gps.vel_n_m_s;
+ y_est[0] = 0.0f;
+ y_est[1] = gps.vel_e_m_s;
+
+ local_pos.ref_lat = lat;
+ local_pos.ref_lon = lon;
+ local_pos.ref_alt = alt + z_est[0];
+ local_pos.ref_timestamp = t;
+
+ /* initialize projection */
+ map_projection_init(&ref, lat, lon);
+ warnx("init ref: lat=%.7f, lon=%.7f, alt=%.2f", (double)lat, (double)lon, (double)alt);
+ mavlink_log_info(mavlink_fd, "[inav] init ref: %.7f, %.7f, %.2f", (double)lat, (double)lon, (double)alt);
}
}
- if (ref_xy_inited) {
+ if (ref_inited) {
/* project GPS lat lon to plane */
float gps_proj[2];
- map_projection_project(gps.lat * 1e-7, gps.lon * 1e-7, &(gps_proj[0]), &(gps_proj[1]));
+ map_projection_project(&ref, lat, lon, &(gps_proj[0]), &(gps_proj[1]));
+
+ /* reset position estimate when GPS becomes good */
+ if (reset_est) {
+ x_est[0] = gps_proj[0];
+ x_est[1] = gps.vel_n_m_s;
+ y_est[0] = gps_proj[1];
+ y_est[1] = gps.vel_e_m_s;
+ }
+
+ /* calculate index of estimated values in buffer */
+ int est_i = buf_ptr - 1 - min(EST_BUF_SIZE - 1, max(0, (int)(params.delay_gps * 1000000.0f / PUB_INTERVAL)));
+ if (est_i < 0) {
+ est_i += EST_BUF_SIZE;
+ }
+
/* calculate correction for position */
- gps_corr[0][0] = gps_proj[0] - x_est[0];
- gps_corr[1][0] = gps_proj[1] - y_est[0];
+ corr_gps[0][0] = gps_proj[0] - est_buf[est_i][0][0];
+ corr_gps[1][0] = gps_proj[1] - est_buf[est_i][1][0];
+ corr_gps[2][0] = local_pos.ref_alt - alt - est_buf[est_i][2][0];
/* calculate correction for velocity */
if (gps.vel_ned_valid) {
- gps_corr[0][1] = gps.vel_n_m_s - x_est[1];
- gps_corr[1][1] = gps.vel_e_m_s - y_est[1];
+ corr_gps[0][1] = gps.vel_n_m_s - est_buf[est_i][0][1];
+ corr_gps[1][1] = gps.vel_e_m_s - est_buf[est_i][1][1];
+ corr_gps[2][1] = gps.vel_d_m_s - est_buf[est_i][2][1];
} else {
- gps_corr[0][1] = 0.0f;
- gps_corr[1][1] = 0.0f;
+ corr_gps[0][1] = 0.0f;
+ corr_gps[1][1] = 0.0f;
+ corr_gps[2][1] = 0.0f;
}
+
+ /* save rotation matrix at this moment */
+ memcpy(R_gps, R_buf[est_i], sizeof(R_gps));
+
+ w_gps_xy = min_eph_epv / fmaxf(min_eph_epv, gps.eph);
+ w_gps_z = min_eph_epv / fmaxf(min_eph_epv, gps.epv);
}
} else {
/* no GPS lock */
- memset(gps_corr, 0, sizeof(gps_corr));
- ref_xy_init_start = 0;
+ memset(corr_gps, 0, sizeof(corr_gps));
+ ref_init_start = 0;
}
gps_updates++;
}
}
- /* end of poll return value check */
+ /* check for timeout on FLOW topic */
+ if ((flow_valid || sonar_valid) && t > flow.timestamp + flow_topic_timeout) {
+ flow_valid = false;
+ sonar_valid = false;
+ warnx("FLOW timeout");
+ mavlink_log_info(mavlink_fd, "[inav] FLOW timeout");
+ }
+
+ /* check for timeout on GPS topic */
+ if (gps_valid && t > gps.timestamp_position + gps_topic_timeout) {
+ gps_valid = false;
+ warnx("GPS timeout");
+ mavlink_log_info(mavlink_fd, "[inav] GPS timeout");
+ }
+
+ /* check for sonar measurement timeout */
+ if (sonar_valid && t > sonar_time + sonar_timeout) {
+ corr_sonar = 0.0f;
+ sonar_valid = false;
+ }
float dt = t_prev > 0 ? (t - t_prev) / 1000000.0f : 0.0f;
+ dt = fmaxf(fminf(0.02, dt), 0.002); // constrain dt from 2 to 20 ms
t_prev = t;
- /* reset ground level on arm */
- if (armed.armed && !flag_armed) {
- baro_alt0 -= z_est[0];
- z_est[0] = 0.0f;
- local_pos.ref_alt = baro_alt0;
- local_pos.ref_timestamp = hrt_absolute_time();
- mavlink_log_info(mavlink_fd, "[inav] new home on arm: alt = %.3f", baro_alt0);
+ /* increase EPH/EPV on each step */
+ if (eph < max_eph_epv) {
+ eph *= 1.0f + dt;
+ }
+ if (epv < max_eph_epv) {
+ epv += 0.005f * dt; // add 1m to EPV each 200s (baro drift)
+ }
+
+ /* use GPS if it's valid and reference position initialized */
+ bool use_gps_xy = ref_inited && gps_valid && params.w_xy_gps_p > MIN_VALID_W;
+ bool use_gps_z = ref_inited && gps_valid && params.w_z_gps_p > MIN_VALID_W;
+ /* use flow if it's valid and (accurate or no GPS available) */
+ bool use_flow = flow_valid && (flow_accurate || !use_gps_xy);
+
+ bool can_estimate_xy = (eph < max_eph_epv) || use_gps_xy || use_flow;
+
+ bool dist_bottom_valid = (t < sonar_valid_time + sonar_valid_timeout);
+
+ if (dist_bottom_valid) {
+ /* surface distance prediction */
+ surface_offset += surface_offset_rate * dt;
+
+ /* surface distance correction */
+ if (sonar_valid) {
+ surface_offset_rate -= corr_sonar * 0.5f * params.w_z_sonar * params.w_z_sonar * dt;
+ surface_offset -= corr_sonar * params.w_z_sonar * dt;
+ }
+ }
+
+ float w_xy_gps_p = params.w_xy_gps_p * w_gps_xy;
+ float w_xy_gps_v = params.w_xy_gps_v * w_gps_xy;
+ float w_z_gps_p = params.w_z_gps_p * w_gps_z;
+
+ /* reduce GPS weight if optical flow is good */
+ if (use_flow && flow_accurate) {
+ w_xy_gps_p *= params.w_gps_flow;
+ w_xy_gps_v *= params.w_gps_flow;
+ }
+
+ /* baro offset correction */
+ if (use_gps_z) {
+ float offs_corr = corr_gps[2][0] * w_z_gps_p * dt;
+ baro_offset += offs_corr;
+ corr_baro += offs_corr;
+ }
+
+ /* accelerometer bias correction for GPS (use buffered rotation matrix) */
+ float accel_bias_corr[3] = { 0.0f, 0.0f, 0.0f };
+
+ if (use_gps_xy) {
+ accel_bias_corr[0] -= corr_gps[0][0] * w_xy_gps_p * w_xy_gps_p;
+ accel_bias_corr[0] -= corr_gps[0][1] * w_xy_gps_v;
+ accel_bias_corr[1] -= corr_gps[1][0] * w_xy_gps_p * w_xy_gps_p;
+ accel_bias_corr[1] -= corr_gps[1][1] * w_xy_gps_v;
+ }
+
+ if (use_gps_z) {
+ accel_bias_corr[2] -= corr_gps[2][0] * w_z_gps_p * w_z_gps_p;
+ }
+
+ /* transform error vector from NED frame to body frame */
+ for (int i = 0; i < 3; i++) {
+ float c = 0.0f;
+
+ for (int j = 0; j < 3; j++) {
+ c += R_gps[j][i] * accel_bias_corr[j];
+ }
+
+ if (isfinite(c)) {
+ acc_bias[i] += c * params.w_acc_bias * dt;
+ }
+ }
+
+ /* accelerometer bias correction for flow and baro (assume that there is no delay) */
+ accel_bias_corr[0] = 0.0f;
+ accel_bias_corr[1] = 0.0f;
+ accel_bias_corr[2] = 0.0f;
+
+ if (use_flow) {
+ accel_bias_corr[0] -= corr_flow[0] * params.w_xy_flow;
+ accel_bias_corr[1] -= corr_flow[1] * params.w_xy_flow;
}
- /* accel bias correction, now only for Z
- * not strictly correct, but stable and works */
- accel_bias[2] += (accel_NED[2] + CONSTANTS_ONE_G) * params.w_acc_bias * dt;
+ accel_bias_corr[2] -= corr_baro * params.w_z_baro * params.w_z_baro;
+
+ /* transform error vector from NED frame to body frame */
+ for (int i = 0; i < 3; i++) {
+ float c = 0.0f;
+
+ for (int j = 0; j < 3; j++) {
+ c += att.R[j][i] * accel_bias_corr[j];
+ }
+
+ if (isfinite(c)) {
+ acc_bias[i] += c * params.w_acc_bias * dt;
+ }
+ }
/* inertial filter prediction for altitude */
- inertial_filter_predict(dt, z_est);
+ inertial_filter_predict(dt, z_est, acc[2]);
+
+ if (!(isfinite(z_est[0]) && isfinite(z_est[1]))) {
+ write_debug_log("BAD ESTIMATE AFTER Z PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v);
+ memcpy(z_est, z_est_prev, sizeof(z_est));
+ }
/* inertial filter correction for altitude */
- baro_alt0 += sonar_corr * params.w_alt_sonar * dt;
- inertial_filter_correct(baro_corr + baro_alt0, dt, z_est, 0, params.w_alt_baro);
- inertial_filter_correct(sonar_corr, dt, z_est, 0, params.w_alt_sonar);
- inertial_filter_correct(accel_corr[2], dt, z_est, 2, params.w_alt_acc);
+ inertial_filter_correct(corr_baro, dt, z_est, 0, params.w_z_baro);
- bool gps_valid = ref_xy_inited && gps.fix_type >= 3 && t < gps.timestamp_position + gps_timeout;
- bool flow_valid = false; // TODO implement opt flow
+ if (use_gps_z) {
+ epv = fminf(epv, gps.epv);
+
+ inertial_filter_correct(corr_gps[2][0], dt, z_est, 0, w_z_gps_p);
+ }
- /* try to estimate xy even if no absolute position source available,
- * if using optical flow velocity will be correct in this case */
- bool can_estimate_xy = gps_valid || flow_valid;
+ if (!(isfinite(z_est[0]) && isfinite(z_est[1]))) {
+ write_debug_log("BAD ESTIMATE AFTER Z CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v);
+ memcpy(z_est, z_est_prev, sizeof(z_est));
+ memset(corr_gps, 0, sizeof(corr_gps));
+ corr_baro = 0;
+
+ } else {
+ memcpy(z_est_prev, z_est, sizeof(z_est));
+ }
if (can_estimate_xy) {
/* inertial filter prediction for position */
- inertial_filter_predict(dt, x_est);
- inertial_filter_predict(dt, y_est);
+ inertial_filter_predict(dt, x_est, acc[0]);
+ inertial_filter_predict(dt, y_est, acc[1]);
+
+ if (!(isfinite(x_est[0]) && isfinite(x_est[1]) && isfinite(y_est[0]) && isfinite(y_est[1]))) {
+ write_debug_log("BAD ESTIMATE AFTER PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v);
+ memcpy(x_est, x_est_prev, sizeof(x_est));
+ memcpy(y_est, y_est_prev, sizeof(y_est));
+ }
/* inertial filter correction for position */
- inertial_filter_correct(accel_corr[0], dt, x_est, 2, params.w_pos_acc);
- inertial_filter_correct(accel_corr[1], dt, y_est, 2, params.w_pos_acc);
+ if (use_flow) {
+ eph = fminf(eph, eph_flow);
+
+ inertial_filter_correct(corr_flow[0], dt, x_est, 1, params.w_xy_flow * w_flow);
+ inertial_filter_correct(corr_flow[1], dt, y_est, 1, params.w_xy_flow * w_flow);
+ }
+
+ if (use_gps_xy) {
+ eph = fminf(eph, gps.eph);
- if (gps_valid) {
- inertial_filter_correct(gps_corr[0][0], dt, x_est, 0, params.w_pos_gps_p);
- inertial_filter_correct(gps_corr[1][0], dt, y_est, 0, params.w_pos_gps_p);
+ inertial_filter_correct(corr_gps[0][0], dt, x_est, 0, w_xy_gps_p);
+ inertial_filter_correct(corr_gps[1][0], dt, y_est, 0, w_xy_gps_p);
- if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_timeout) {
- inertial_filter_correct(gps_corr[0][1], dt, x_est, 1, params.w_pos_gps_v);
- inertial_filter_correct(gps_corr[1][1], dt, y_est, 1, params.w_pos_gps_v);
+ if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_topic_timeout) {
+ inertial_filter_correct(corr_gps[0][1], dt, x_est, 1, w_xy_gps_v);
+ inertial_filter_correct(corr_gps[1][1], dt, y_est, 1, w_xy_gps_v);
}
}
+
+ if (!(isfinite(x_est[0]) && isfinite(x_est[1]) && isfinite(y_est[0]) && isfinite(y_est[1]))) {
+ write_debug_log("BAD ESTIMATE AFTER CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v);
+ memcpy(x_est, x_est_prev, sizeof(x_est));
+ memcpy(y_est, y_est_prev, sizeof(y_est));
+ memset(corr_gps, 0, sizeof(corr_gps));
+ memset(corr_flow, 0, sizeof(corr_flow));
+
+ } else {
+ memcpy(x_est_prev, x_est, sizeof(x_est));
+ memcpy(y_est_prev, y_est, sizeof(y_est));
+ }
+ } else {
+ /* gradually reset xy velocity estimates */
+ inertial_filter_correct(-x_est[1], dt, x_est, 1, params.w_xy_res_v);
+ inertial_filter_correct(-y_est[1], dt, y_est, 1, params.w_xy_res_v);
}
/* detect land */
- alt_avg += (z_est[0] - alt_avg) * dt / params.land_t;
- float alt_disp = z_est[0] - alt_avg;
- alt_disp = alt_disp * alt_disp;
+ alt_avg += (- z_est[0] - alt_avg) * dt / params.land_t;
+ float alt_disp2 = - z_est[0] - alt_avg;
+ alt_disp2 = alt_disp2 * alt_disp2;
float land_disp2 = params.land_disp * params.land_disp;
/* get actual thrust output */
float thrust = armed.armed ? actuator.control[3] : 0.0f;
if (landed) {
- if (alt_disp > land_disp2 && thrust > params.land_thr) {
+ if (alt_disp2 > land_disp2 || thrust > params.land_thr) {
landed = false;
landed_time = 0;
}
+ /* reset xy velocity estimates when landed */
+ x_est[1] = 0.0f;
+ y_est[1] = 0.0f;
} else {
- if (alt_disp < land_disp2 && thrust < params.land_thr) {
+ if (alt_disp2 < land_disp2 && thrust < params.land_thr) {
if (landed_time == 0) {
landed_time = t; // land detected first time
@@ -576,11 +961,11 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
float updates_dt = (t - updates_counter_start) * 0.000001f;
warnx(
"updates rate: accelerometer = %.1f/s, baro = %.1f/s, gps = %.1f/s, attitude = %.1f/s, flow = %.1f/s",
- accel_updates / updates_dt,
- baro_updates / updates_dt,
- gps_updates / updates_dt,
- attitude_updates / updates_dt,
- flow_updates / updates_dt);
+ (double)(accel_updates / updates_dt),
+ (double)(baro_updates / updates_dt),
+ (double)(gps_updates / updates_dt),
+ (double)(attitude_updates / updates_dt),
+ (double)(flow_updates / updates_dt));
updates_counter_start = t;
accel_updates = 0;
baro_updates = 0;
@@ -590,13 +975,30 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
}
}
- if (t > pub_last + pub_interval) {
+ if (t > pub_last + PUB_INTERVAL) {
pub_last = t;
+
+ /* push current estimate to buffer */
+ est_buf[buf_ptr][0][0] = x_est[0];
+ est_buf[buf_ptr][0][1] = x_est[1];
+ est_buf[buf_ptr][1][0] = y_est[0];
+ est_buf[buf_ptr][1][1] = y_est[1];
+ est_buf[buf_ptr][2][0] = z_est[0];
+ est_buf[buf_ptr][2][1] = z_est[1];
+
+ /* push current rotation matrix to buffer */
+ memcpy(R_buf[buf_ptr], att.R, sizeof(att.R));
+
+ buf_ptr++;
+ if (buf_ptr >= EST_BUF_SIZE) {
+ buf_ptr = 0;
+ }
+
/* publish local position */
- local_pos.timestamp = t;
- local_pos.xy_valid = can_estimate_xy && gps_valid;
+ local_pos.xy_valid = can_estimate_xy;
local_pos.v_xy_valid = can_estimate_xy;
- local_pos.xy_global = local_pos.xy_valid && gps_valid; // will make sense when local position sources (e.g. vicon) will be implemented
+ local_pos.xy_global = local_pos.xy_valid && use_gps_xy;
+ local_pos.z_global = local_pos.z_valid && use_gps_z;
local_pos.x = x_est[0];
local_pos.vx = x_est[1];
local_pos.y = y_est[0];
@@ -605,48 +1007,52 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
local_pos.vz = z_est[1];
local_pos.landed = landed;
local_pos.yaw = att.yaw;
+ local_pos.dist_bottom_valid = dist_bottom_valid;
+ local_pos.eph = eph;
+ local_pos.epv = epv;
+
+ if (local_pos.dist_bottom_valid) {
+ local_pos.dist_bottom = -z_est[0] - surface_offset;
+ local_pos.dist_bottom_rate = -z_est[1] - surface_offset_rate;
+ }
+
+ local_pos.timestamp = t;
orb_publish(ORB_ID(vehicle_local_position), vehicle_local_position_pub, &local_pos);
- /* publish global position */
- global_pos.valid = local_pos.xy_global;
+ if (local_pos.xy_global && local_pos.z_global) {
+ /* publish global position */
+ global_pos.timestamp = t;
+ global_pos.time_gps_usec = gps.time_gps_usec;
- if (local_pos.xy_global) {
double est_lat, est_lon;
- map_projection_reproject(local_pos.x, local_pos.y, &est_lat, &est_lon);
- global_pos.lat = (int32_t)(est_lat * 1e7);
- global_pos.lon = (int32_t)(est_lon * 1e7);
- global_pos.time_gps_usec = gps.time_gps_usec;
- }
+ map_projection_reproject(&ref, local_pos.x, local_pos.y, &est_lat, &est_lon);
- /* set valid values even if position is not valid */
- if (local_pos.v_xy_valid) {
- global_pos.vx = local_pos.vx;
- global_pos.vy = local_pos.vy;
- }
+ global_pos.lat = est_lat;
+ global_pos.lon = est_lon;
+ global_pos.alt = local_pos.ref_alt - local_pos.z;
- if (local_pos.z_valid) {
- global_pos.relative_alt = -local_pos.z;
- }
+ global_pos.vel_n = local_pos.vx;
+ global_pos.vel_e = local_pos.vy;
+ global_pos.vel_d = local_pos.vz;
- if (local_pos.z_global) {
- global_pos.alt = local_pos.ref_alt - local_pos.z;
- }
+ global_pos.yaw = local_pos.yaw;
- if (local_pos.v_z_valid) {
- global_pos.vz = local_pos.vz;
- }
- global_pos.yaw = local_pos.yaw;
+ global_pos.eph = eph;
+ global_pos.epv = epv;
- global_pos.timestamp = t;
+ if (vehicle_global_position_pub < 0) {
+ vehicle_global_position_pub = orb_advertise(ORB_ID(vehicle_global_position), &global_pos);
- orb_publish(ORB_ID(vehicle_global_position), vehicle_global_position_pub, &global_pos);
+ } else {
+ orb_publish(ORB_ID(vehicle_global_position), vehicle_global_position_pub, &global_pos);
+ }
+ }
}
- flag_armed = armed.armed;
}
- warnx("exiting.");
- mavlink_log_info(mavlink_fd, "[inav] exiting");
+ warnx("stopped");
+ mavlink_log_info(mavlink_fd, "[inav] stopped");
thread_running = false;
return 0;
}