aboutsummaryrefslogtreecommitdiff
path: root/apps/ardrone_control/attitude_control.c
blob: 2d2596d6dbf8f0a27cc4033e1276ab80c46733e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/****************************************************************************
 *
 *   Copyright (C) 2008-2012 PX4 Development Team. All rights reserved.
 *   Author: Thomas Gubler <thomasgubler@student.ethz.ch>
 *           Julian Oes <joes@student.ethz.ch>
 *           Laurens Mackay <mackayl@student.ethz.ch>
 *           Tobias Naegeli <naegelit@student.ethz.ch>
 *           Martin Rutschmann <rutmarti@student.ethz.ch>
 *           Lorenz Meier <lm@inf.ethz.ch>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/*
 * @file Implementation of attitude controller
 */

#include "attitude_control.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <px4/attitude_estimator_bm/matrix.h> //TODO: move matrix.h to somewhere else?
#include "ardrone_motor_control.h"
#include <float.h>
#include <math.h>
#include "pid.h"
#include <arch/board/up_hrt.h>

extern int ardrone_write;
extern int gpios;

#define CONTROL_PID_ATTITUDE_INTERVAL	5e-3

void turn_xy_plane(const float_vect3 *vector, float yaw,
		   float_vect3 *result)
{
	//turn clockwise
	static uint16_t counter;

	result->x = (cos(yaw) * vector->x + sin(yaw) * vector->y);
	result->y = (-sin(yaw) * vector->x + cos(yaw) * vector->y);
	result->z = vector->z; //leave direction normal to xy-plane untouched

	counter++;
}

void navi2body_xy_plane(const float_vect3 *vector, const float yaw,
			float_vect3 *result)
{
	turn_xy_plane(vector, yaw, result);
//	result->x = vector->x;
//	result->y = vector->y;
//	result->z = vector->z;
	//	result->x = cos(yaw) * vector->x + sin(yaw) * vector->y;
	//	result->y = -sin(yaw) * vector->x + cos(yaw) * vector->y;
	//	result->z = vector->z; //leave direction normal to xy-plane untouched
}

void control_attitude(const struct rc_channels_s *rc, const struct vehicle_attitude_s *att, const struct vehicle_status_s *status, int ardrone_pub, struct ardrone_control_s *ar_control)
{
	static int motor_skip_counter = 0;

	static PID_t yaw_pos_controller;
	static PID_t yaw_speed_controller;
	static PID_t nick_controller;
	static PID_t roll_controller;

	static const float min_gas = 1;
	static const float max_gas = 512;
	static uint16_t motor_pwm[4] = {0, 0, 0, 0};
	static float motor_calc[4] = {0.0f, 0.0f, 0.0f, 0.0f};
//	static float remote_control_weight_z = 1;
//	static float position_control_weight_z = 0;

	static float pid_yawpos_lim;
	static float pid_yawspeed_lim;
	static float pid_att_lim;

	static bool initialized;

	static float_vect3 attitude_setpoint_navigationframe_from_positioncontroller;

	static hrt_abstime now_time;
	static hrt_abstime last_time;

	static commander_state_machine_t current_state;

	/* initialize the pid controllers when the function is called for the first time */
	if (initialized == false) {

		pid_init(&yaw_pos_controller,
			 global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P],
			 global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I],
			 global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D],
			 global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU],
			 PID_MODE_DERIVATIV_CALC, 154);

		pid_init(&yaw_speed_controller,
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU],
			 PID_MODE_DERIVATIV_CALC, 155);

		pid_init(&nick_controller,
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU],
			 PID_MODE_DERIVATIV_SET, 156);

		pid_init(&roll_controller,
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU],
			 PID_MODE_DERIVATIV_SET, 157);

		pid_yawpos_lim = 	global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM];
		pid_yawspeed_lim =	(max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM];
		pid_att_lim =	(max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM];

		//TODO: true initialization? get gps while on ground?
		attitude_setpoint_navigationframe_from_positioncontroller.x = 0.0f;
		attitude_setpoint_navigationframe_from_positioncontroller.y = 0.0f;
		attitude_setpoint_navigationframe_from_positioncontroller.z = 0.0f;

		last_time = 0;
		initialized = true;
	}

	/* load new parameters with lower rate */
	if (motor_skip_counter % 50 == 0) {
		pid_set_parameters(&yaw_pos_controller,
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU]);

		pid_set_parameters(&yaw_speed_controller,
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU]);

		pid_set_parameters(&nick_controller,
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]);

		pid_set_parameters(&roll_controller,
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]);

		pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM];
		pid_yawspeed_lim = (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM];
		pid_att_lim = (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM];
	}

	current_state = status->state_machine;
	float_vect3 attitude_setpoint_bodyframe = {}; //this is the setpoint in the bodyframe "mixed" together from the setpoint from the remote and the setpoint from the position controller

	if (current_state == SYSTEM_STATE_AUTO) {

		attitude_setpoint_navigationframe_from_positioncontroller.x = ar_control->attitude_setpoint_navigationframe_from_positioncontroller[0];
		attitude_setpoint_navigationframe_from_positioncontroller.y = ar_control->attitude_setpoint_navigationframe_from_positioncontroller[1];
		attitude_setpoint_navigationframe_from_positioncontroller.z = ar_control->attitude_setpoint_navigationframe_from_positioncontroller[2];

		float yaw_e = att->yaw - attitude_setpoint_navigationframe_from_positioncontroller.z;

		// don't turn around the wrong side (only works if yaw angle is between +- 180 degree)
		if (yaw_e > M_PI) {
			yaw_e -= 2.0f * M_PI;
		}

		if (yaw_e < -M_PI) {
			yaw_e += 2.0f * M_PI;
		}

		attitude_setpoint_navigationframe_from_positioncontroller.z = pid_calculate(&yaw_pos_controller, 0, yaw_e, 0, CONTROL_PID_ATTITUDE_INTERVAL);


		/* limit control output */
		if (attitude_setpoint_navigationframe_from_positioncontroller.z > pid_yawpos_lim) {
			attitude_setpoint_navigationframe_from_positioncontroller.z = pid_yawpos_lim;
			yaw_pos_controller.saturated = 1;
		}

		if (attitude_setpoint_navigationframe_from_positioncontroller.z < -pid_yawpos_lim) {
			attitude_setpoint_navigationframe_from_positioncontroller.z = -pid_yawpos_lim;
			yaw_pos_controller.saturated = 1;
		}

		//transform attitude setpoint from position controller from navi to body frame on xy_plane
		float_vect3 attitude_setpoint_bodyframe_from_positioncontroller;
		navi2body_xy_plane(&attitude_setpoint_navigationframe_from_positioncontroller, att->yaw , &attitude_setpoint_bodyframe_from_positioncontroller); //yaw angle= att->yaw
		//now everything is in body frame


		//TODO: here we decide which input (position controller or ppm) we use. For now we have only the ppm, this should be decided dpending on the state machione (manula or auto) ppm should always overwrite auto (?)
		attitude_setpoint_bodyframe.x = attitude_setpoint_bodyframe_from_positioncontroller.x;
		attitude_setpoint_bodyframe.y = attitude_setpoint_bodyframe_from_positioncontroller.y;
		attitude_setpoint_bodyframe.z = attitude_setpoint_bodyframe_from_positioncontroller.z;

	} else if (current_state == SYSTEM_STATE_MANUAL) {
		attitude_setpoint_bodyframe.x = -((float)rc->chan[rc->function[ROLL]].scale / 10000.0f) * 3.14159265 / 8.0f;
		attitude_setpoint_bodyframe.y = -((float)rc->chan[rc->function[PITCH]].scale / 10000.0f) * 3.14159265 / 8.0f;
		attitude_setpoint_bodyframe.z = -((float)rc->chan[rc->function[YAW]].scale / 10000.0f) * 3.14159265;
	}

	/* add an attitude offset which needs to be estimated somewhere */
	attitude_setpoint_bodyframe.x += global_data_parameter_storage->pm.param_values[PARAM_ATT_XOFFSET];
	attitude_setpoint_bodyframe.y += global_data_parameter_storage->pm.param_values[PARAM_ATT_YOFFSET];

	/*Calculate Controllers*/
	//control Nick
	float nick = pid_calculate(&nick_controller, attitude_setpoint_bodyframe.y, att->pitch, att->pitchspeed, CONTROL_PID_ATTITUDE_INTERVAL);
	//control Roll
	float roll = pid_calculate(&roll_controller, attitude_setpoint_bodyframe.x, att->roll, att->rollspeed, CONTROL_PID_ATTITUDE_INTERVAL);
	//control Yaw Speed
	float yaw = pid_calculate(&yaw_speed_controller, attitude_setpoint_bodyframe.z, att->yawspeed, 0, CONTROL_PID_ATTITUDE_INTERVAL); 	//attitude_setpoint_bodyframe.z is yaw speed!

	//compensation to keep force in z-direction
	float zcompensation;

	if (fabs(att->roll) > 0.5f) {
		zcompensation = 1.13949393f;

	} else {
		zcompensation = 1.0f / cosf(att->roll);
	}

	if (fabs(att->pitch) > 0.5f) {
		zcompensation *= 1.13949393f;

	} else {
		zcompensation *= 1.0f / cosf(att->pitch);
	}

	// use global_data.position_control_output.z and mix parameter global_data.param[PARAM_MIX_POSITION_Z_WEIGHT]
	// to compute thrust for Z position control
	//
	//	float motor_thrust = min_gas +
	//			( ( 1 - global_data.param[PARAM_MIX_POSITION_Z_WEIGHT] ) * ( max_gas - min_gas ) * global_data.gas_remote * zcompensation )
	//		   + ( global_data.param[PARAM_MIX_POSITION_Z_WEIGHT] * ( max_gas - min_gas ) * controlled_thrust * zcompensation );
	//calculate the basic thrust



	float motor_thrust = 0;

	// FLYING MODES
	if (current_state == SYSTEM_STATE_MANUAL) {
		motor_thrust = (float)rc->chan[rc->function[THROTTLE]].scale;

	} else if (current_state == SYSTEM_STATE_GROUND_READY || current_state == SYSTEM_STATE_STABILIZED || current_state == SYSTEM_STATE_AUTO || current_state == SYSTEM_STATE_MISSION_ABORT) {
		motor_thrust = (float)rc->chan[rc->function[THROTTLE]].scale;	//TODO

	} else if (current_state == SYSTEM_STATE_EMCY_LANDING) {
		motor_thrust = (float)rc->chan[rc->function[THROTTLE]].scale;	//TODO

	} else if (current_state == SYSTEM_STATE_EMCY_CUTOFF) {
		motor_thrust = 0;	//immediately cut off thrust!

	} else {
		motor_thrust = 0;	// Motor thrust must be zero in any other mode!
	}

	// Convertion to motor-step units
	motor_thrust *= zcompensation;
	motor_thrust *= max_gas / 20000.0f; //TODO: check this
	motor_thrust += (max_gas - min_gas) / 2.f;

	//limit control output
	//yawspeed
	if (yaw > pid_yawspeed_lim) {
		yaw = pid_yawspeed_lim;
		yaw_speed_controller.saturated = 1;
	}

	if (yaw < -pid_yawspeed_lim) {
		yaw = -pid_yawspeed_lim;
		yaw_speed_controller.saturated = 1;
	}

	if (nick > pid_att_lim) {
		nick = pid_att_lim;
		nick_controller.saturated = 1;
	}

	if (nick < -pid_att_lim) {
		nick = -pid_att_lim;
		nick_controller.saturated = 1;
	}


	if (roll > pid_att_lim) {
		roll = pid_att_lim;
		roll_controller.saturated = 1;
	}

	if (roll < -pid_att_lim) {
		roll = -pid_att_lim;
		roll_controller.saturated = 1;
	}

	/* Emit controller values */
	ar_control->setpoint_thrust_cast = motor_thrust;
	ar_control->setpoint_attitude[0] = attitude_setpoint_bodyframe.x;
	ar_control->setpoint_attitude[1] = attitude_setpoint_bodyframe.y;
	ar_control->setpoint_attitude[2] = attitude_setpoint_bodyframe.z;
	ar_control->attitude_control_output[0] = roll;
	ar_control->attitude_control_output[1] = nick;
	ar_control->attitude_control_output[2] = yaw;
	ar_control->zcompensation = zcompensation;
	orb_publish(ORB_ID(ardrone_control), ardrone_pub, ar_control);

	static float output_band = 0.f;
	static float band_factor = 0.75f;
	static float startpoint_full_control = 150.0f;		//TODO
	static float yaw_factor = 1.0f;

	if (motor_thrust <= min_gas) {
		motor_thrust = min_gas;
		output_band = 0.f;

	} else if (motor_thrust < startpoint_full_control && motor_thrust > min_gas) {
		output_band = band_factor * (motor_thrust - min_gas);

	} else if (motor_thrust >= startpoint_full_control && motor_thrust < max_gas - band_factor * startpoint_full_control) {
		output_band = band_factor * startpoint_full_control;

	} else if (motor_thrust >= max_gas - band_factor * startpoint_full_control) {
		output_band = band_factor * (max_gas - motor_thrust);
	}

	//add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer

	// FRONT (MOTOR 1)
	motor_calc[0] = motor_thrust + (roll / 2 + nick / 2 - yaw);

	// RIGHT (MOTOR 2)
	motor_calc[1] = motor_thrust + (-roll / 2 + nick / 2 + yaw);

	// BACK (MOTOR 3)
	motor_calc[2] = motor_thrust + (-roll / 2 - nick / 2 - yaw);

	// LEFT (MOTOR 4)
	motor_calc[3] = motor_thrust + (roll / 2 - nick / 2 + yaw);

	// if we are not in the output band
	if (!(motor_calc[0] < motor_thrust + output_band && motor_calc[0] > motor_thrust - output_band
	      && motor_calc[1] < motor_thrust + output_band && motor_calc[1] > motor_thrust - output_band
	      && motor_calc[2] < motor_thrust + output_band && motor_calc[2] > motor_thrust - output_band
	      && motor_calc[3] < motor_thrust + output_band && motor_calc[3] > motor_thrust - output_band)) {

		yaw_factor = 0.5f;
		// FRONT (MOTOR 1)
		motor_calc[0] = motor_thrust + (roll / 2 + nick / 2 - yaw * yaw_factor);

		// RIGHT (MOTOR 2)
		motor_calc[1] = motor_thrust + (-roll / 2 + nick / 2 + yaw * yaw_factor);

		// BACK (MOTOR 3)
		motor_calc[2] = motor_thrust + (-roll / 2 - nick / 2 - yaw * yaw_factor);

		// LEFT (MOTOR 4)
		motor_calc[3] = motor_thrust + (roll / 2 - nick / 2 + yaw * yaw_factor);
	}

	uint8_t i;

	for (i = 0; i < 4; i++) {
		//check for limits
		if (motor_calc[i] < motor_thrust - output_band) {
			motor_calc[i] = motor_thrust - output_band;
		}

		if (motor_calc[i] > motor_thrust + output_band) {
			motor_calc[i] = motor_thrust + output_band;
		}
	}

	// Write out actual thrust
	motor_pwm[0] = (uint16_t) motor_calc[0];
	motor_pwm[1] = (uint16_t) motor_calc[1];
	motor_pwm[2] = (uint16_t) motor_calc[2];
	motor_pwm[3] = (uint16_t) motor_calc[3];

	//SEND MOTOR COMMANDS
	uint8_t motorSpeedBuf[5] = {1, 2, 3, 4, 5};
	ar_get_motor_packet(motorSpeedBuf, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);
	write(ardrone_write, motorSpeedBuf, 5);

	motor_skip_counter++;

//		now_time = hrt_absolute_time() / 1000000;
//		if(now_time - last_time > 0)
//		{
//			printf("Counter: %ld\n",control_counter);
//			last_time = now_time;
//			control_counter = 0;
//		}
}