aboutsummaryrefslogtreecommitdiff
path: root/apps/gps/nmealib/gmath.c
blob: 327b982efe3699939c94392703f2dc9d8bc13056 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*
 *
 * NMEA library
 * URL: http://nmea.sourceforge.net
 * Author: Tim (xtimor@gmail.com)
 * Licence: http://www.gnu.org/licenses/lgpl.html
 * $Id: gmath.c 17 2008-03-11 11:56:11Z xtimor $
 *
 */

/*! \file gmath.h */
#include "nmea/gmath.h"

#include <math.h>
#include <float.h>

/**
 * \fn nmea_degree2radian
 * \brief Convert degree to radian
 */
float nmea_degree2radian(float val)
{ return (val * NMEA_PI180); }

/**
 * \fn nmea_radian2degree
 * \brief Convert radian to degree
 */
float nmea_radian2degree(float val)
{ return (val / NMEA_PI180); }

/**
 * \brief Convert NDEG (NMEA degree) to fractional degree
 */
float nmea_ndeg2degree(float val)
{
    float deg = ((int)(val / 100));
    val = deg + (val - deg * 100) / 60;
    return val;
}

/**
 * \brief Convert fractional degree to NDEG (NMEA degree)
 */
float nmea_degree2ndeg(float val)
{
    float int_part;
    float fra_part;
    fra_part = modf(val, &int_part);
    val = int_part * 100 + fra_part * 60;
    return val;
}

/**
 * \fn nmea_ndeg2radian
 * \brief Convert NDEG (NMEA degree) to radian
 */
float nmea_ndeg2radian(float val)
{ return nmea_degree2radian(nmea_ndeg2degree(val)); }

/**
 * \fn nmea_radian2ndeg
 * \brief Convert radian to NDEG (NMEA degree)
 */
float nmea_radian2ndeg(float val)
{ return nmea_degree2ndeg(nmea_radian2degree(val)); }

/**
 * \brief Calculate PDOP (Position Dilution Of Precision) factor
 */
float nmea_calc_pdop(float hdop, float vdop)
{
    return sqrt(pow(hdop, 2) + pow(vdop, 2));
}

float nmea_dop2meters(float dop)
{ return (dop * NMEA_DOP_FACTOR); }

float nmea_meters2dop(float meters)
{ return (meters / NMEA_DOP_FACTOR); }

/**
 * \brief Calculate distance between two points
 * \return Distance in meters
 */
float nmea_distance(
        const nmeaPOS *from_pos,    /**< From position in radians */
        const nmeaPOS *to_pos       /**< To position in radians */
        )
{
    float dist = ((float)NMEA_EARTHRADIUS_M) * acos(
        sin(to_pos->lat) * sin(from_pos->lat) +
        cos(to_pos->lat) * cos(from_pos->lat) * cos(to_pos->lon - from_pos->lon)
        );
    return dist;
}

/**
 * \brief Calculate distance between two points
 * This function uses an algorithm for an oblate spheroid earth model.
 * The algorithm is described here: 
 * http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
 * \return Distance in meters
 */
float nmea_distance_ellipsoid(
        const nmeaPOS *from_pos,    /**< From position in radians */
        const nmeaPOS *to_pos,      /**< To position in radians */
        float *from_azimuth,       /**< (O) azimuth at "from" position in radians */
        float *to_azimuth          /**< (O) azimuth at "to" position in radians */
        )
{
    /* All variables */
    float f, a, b, sqr_a, sqr_b;
    float L, phi1, phi2, U1, U2, sin_U1, sin_U2, cos_U1, cos_U2;
    float sigma, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, sqr_cos_alpha, lambda, sin_lambda, cos_lambda, delta_lambda;
    int remaining_steps; 
    float sqr_u, A, B, delta_sigma;

    /* Check input */
    //NMEA_ASSERT(from_pos != 0);
    //NMEA_ASSERT(to_pos != 0);

    if ((from_pos->lat == to_pos->lat) && (from_pos->lon == to_pos->lon))
    { /* Identical points */
        if ( from_azimuth != 0 )
            *from_azimuth = 0;
        if ( to_azimuth != 0 )
            *to_azimuth = 0;
        return 0;    
    } /* Identical points */

    /* Earth geometry */
    f = NMEA_EARTH_FLATTENING;
    a = NMEA_EARTH_SEMIMAJORAXIS_M;
    b = (1 - f) * a;
    sqr_a = a * a;
    sqr_b = b * b;

    /* Calculation */
    L = to_pos->lon - from_pos->lon;
    phi1 = from_pos->lat;
    phi2 = to_pos->lat;
    U1 = atan((1 - f) * tan(phi1));
    U2 = atan((1 - f) * tan(phi2));
    sin_U1 = sin(U1);
    sin_U2 = sin(U2);
    cos_U1 = cos(U1);
    cos_U2 = cos(U2);

    /* Initialize iteration */
    sigma = 0;
    sin_sigma = sin(sigma);
    cos_sigma = cos(sigma);
    cos_2_sigmam = 0;
    sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
    sqr_cos_alpha = 0;
    lambda = L;
    sin_lambda = sin(lambda);                            
    cos_lambda = cos(lambda);                       
    delta_lambda = lambda;
    remaining_steps = 20; 

    while ((delta_lambda > 1e-12) && (remaining_steps > 0)) 
    { /* Iterate */
        /* Variables */
        float tmp1, tmp2, tan_sigma, sin_alpha, cos_alpha, C, lambda_prev;

        /* Calculation */
        tmp1 = cos_U2 * sin_lambda;
        tmp2 = cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda;  
        sin_sigma = sqrt(tmp1 * tmp1 + tmp2 * tmp2);                
        cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda;   
        tan_sigma = sin_sigma / cos_sigma;                  
        sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma;  
        cos_alpha = cos(asin(sin_alpha));                 
        sqr_cos_alpha = cos_alpha * cos_alpha;                     
        cos_2_sigmam = cos_sigma - 2 * sin_U1 * sin_U2 / sqr_cos_alpha;
        sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam; 
        C = f / 16 * sqr_cos_alpha * (4 + f * (4 - 3 * sqr_cos_alpha));
        lambda_prev = lambda; 
        sigma = asin(sin_sigma); 
        lambda = L + 
            (1 - C) * f * sin_alpha
            * (sigma + C * sin_sigma * (cos_2_sigmam + C * cos_sigma * (-1 + 2 * sqr_cos_2_sigmam)));                                                
        delta_lambda = lambda_prev - lambda; 
        if ( delta_lambda < 0 ) delta_lambda = -delta_lambda; 
        sin_lambda = sin(lambda);
        cos_lambda = cos(lambda);
        remaining_steps--; 
    }  /* Iterate */

    /* More calculation  */
    sqr_u = sqr_cos_alpha * (sqr_a - sqr_b) / sqr_b; 
    A = 1 + sqr_u / 16384 * (4096 + sqr_u * (-768 + sqr_u * (320 - 175 * sqr_u)));
    B = sqr_u / 1024 * (256 + sqr_u * (-128 + sqr_u * (74 - 47 * sqr_u)));
    delta_sigma = B * sin_sigma * ( 
        cos_2_sigmam + B / 4 * ( 
        cos_sigma * (-1 + 2 * sqr_cos_2_sigmam) -
        B / 6 * cos_2_sigmam * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * sqr_cos_2_sigmam)
        ));

    /* Calculate result */
    if ( from_azimuth != 0 )
    {
        float tan_alpha_1 = cos_U2 * sin_lambda / (cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda);
        *from_azimuth = atan(tan_alpha_1);
    }
    if ( to_azimuth != 0 )
    {
        float tan_alpha_2 = cos_U1 * sin_lambda / (-sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_lambda);
        *to_azimuth = atan(tan_alpha_2);
    }

    return b * A * (sigma - delta_sigma);
}

/**
 * \brief Horizontal move of point position
 */
int nmea_move_horz(
    const nmeaPOS *start_pos,   /**< Start position in radians */
    nmeaPOS *end_pos,           /**< Result position in radians */
    float azimuth,             /**< Azimuth (degree) [0, 359] */
    float distance             /**< Distance (km) */
    )
{
    nmeaPOS p1 = *start_pos;
    int RetVal = 1;

    distance /= NMEA_EARTHRADIUS_KM; /* Angular distance covered on earth's surface */
    azimuth = nmea_degree2radian(azimuth);

    end_pos->lat = asin(
        sin(p1.lat) * cos(distance) + cos(p1.lat) * sin(distance) * cos(azimuth));
    end_pos->lon = p1.lon + atan2(
        sin(azimuth) * sin(distance) * cos(p1.lat), cos(distance) - sin(p1.lat) * sin(end_pos->lat));

    if(NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon))
    {
        end_pos->lat = 0; end_pos->lon = 0;
        RetVal = 0;
    }

    return RetVal;
}

/**
 * \brief Horizontal move of point position
 * This function uses an algorithm for an oblate spheroid earth model.
 * The algorithm is described here: 
 * http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
 */
int nmea_move_horz_ellipsoid(
    const nmeaPOS *start_pos,   /**< Start position in radians */
    nmeaPOS *end_pos,           /**< (O) Result position in radians */
    float azimuth,             /**< Azimuth in radians */
    float distance,            /**< Distance (km) */
    float *end_azimuth         /**< (O) Azimuth at end position in radians */
    )
{
    /* Variables */
    float f, a, b, sqr_a, sqr_b;
    float phi1, tan_U1, sin_U1, cos_U1, s, alpha1, sin_alpha1, cos_alpha1;
    float tan_sigma1, sigma1, sin_alpha, cos_alpha, sqr_cos_alpha, sqr_u, A, B;
    float sigma_initial, sigma, sigma_prev, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, delta_sigma;
    int remaining_steps;
    float tmp1, phi2, lambda, C, L;
    
    /* Check input */
    //NMEA_ASSERT(start_pos != 0);
    //NMEA_ASSERT(end_pos != 0);
    
    if (fabs(distance) < 1e-12)
    { /* No move */
        *end_pos = *start_pos;
        if ( end_azimuth != 0 ) *end_azimuth = azimuth;
        return ! (NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon));
    } /* No move */

    /* Earth geometry */
    f = NMEA_EARTH_FLATTENING;
    a = NMEA_EARTH_SEMIMAJORAXIS_M;
    b = (1 - f) * a;
    sqr_a = a * a;
    sqr_b = b * b;
    
    /* Calculation */
    phi1 = start_pos->lat;
    tan_U1 = (1 - f) * tan(phi1);
    cos_U1 = 1 / sqrt(1 + tan_U1 * tan_U1);
    sin_U1 = tan_U1 * cos_U1;
    s = distance;
    alpha1 = azimuth;
    sin_alpha1 = sin(alpha1);
    cos_alpha1 = cos(alpha1);
    tan_sigma1 = tan_U1 / cos_alpha1;
    sigma1 = atan2(tan_U1, cos_alpha1);
    sin_alpha = cos_U1 * sin_alpha1;
    sqr_cos_alpha = 1 - sin_alpha * sin_alpha;
    cos_alpha = sqrt(sqr_cos_alpha);
    sqr_u = sqr_cos_alpha * (sqr_a - sqr_b) / sqr_b; 
    A = 1 + sqr_u / 16384 * (4096 + sqr_u * (-768 + sqr_u * (320 - 175 * sqr_u)));
    B = sqr_u / 1024 * (256 + sqr_u * (-128 + sqr_u * (74 - 47 * sqr_u)));
    
    /* Initialize iteration */
    sigma_initial = s / (b * A);
    sigma = sigma_initial;
    sin_sigma = sin(sigma);
    cos_sigma = cos(sigma);
    cos_2_sigmam = cos(2 * sigma1 + sigma);
    sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
    delta_sigma = 0;
    sigma_prev = 2 * NMEA_PI;
    remaining_steps = 20;

    while ((fabs(sigma - sigma_prev) > 1e-12) && (remaining_steps > 0))
    { /* Iterate */
        cos_2_sigmam = cos(2 * sigma1 + sigma);
        sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
        sin_sigma = sin(sigma);
        cos_sigma = cos(sigma);
        delta_sigma = B * sin_sigma * ( 
             cos_2_sigmam + B / 4 * ( 
             cos_sigma * (-1 + 2 * sqr_cos_2_sigmam) - 
             B / 6 * cos_2_sigmam * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * sqr_cos_2_sigmam)
             ));
        sigma_prev = sigma;
        sigma = sigma_initial + delta_sigma;
        remaining_steps --;
    } /* Iterate */
    
    /* Calculate result */
    tmp1 = (sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_alpha1);
    phi2 = atan2(
            sin_U1 * cos_sigma + cos_U1 * sin_sigma * cos_alpha1,
            (1 - f) * sqrt(sin_alpha * sin_alpha + tmp1 * tmp1)
            );
    lambda = atan2(
            sin_sigma * sin_alpha1,
            cos_U1 * cos_sigma - sin_U1 * sin_sigma * cos_alpha1
            );
    C = f / 16 * sqr_cos_alpha * (4 + f * (4 - 3 * sqr_cos_alpha));
    L = lambda -
        (1 - C) * f * sin_alpha * (
        sigma + C * sin_sigma *
        (cos_2_sigmam + C * cos_sigma * (-1 + 2 * sqr_cos_2_sigmam))
        );
    
    /* Result */
    end_pos->lon = start_pos->lon + L;
    end_pos->lat = phi2;
    if ( end_azimuth != 0 )
    {
        *end_azimuth = atan2(
            sin_alpha, -sin_U1 * sin_sigma + cos_U1 * cos_sigma * cos_alpha1
            );
    }
    return ! (NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon));
}

/**
 * \brief Convert position from INFO to radians position
 */
void nmea_info2pos(const nmeaINFO *info, nmeaPOS *pos)
{
    pos->lat = nmea_ndeg2radian(info->lat);
    pos->lon = nmea_ndeg2radian(info->lon);
}

/**
 * \brief Convert radians position to INFOs position
 */
void nmea_pos2info(const nmeaPOS *pos, nmeaINFO *info)
{
    info->lat = nmea_radian2ndeg(pos->lat);
    info->lon = nmea_radian2ndeg(pos->lon);
}