aboutsummaryrefslogtreecommitdiff
path: root/apps/position_estimator/codegen/position_estimator.c
blob: 731ae03e347e471a22c7505afeb49c5cd3f1b814 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
 * position_estimator.c
 *
 * Code generation for function 'position_estimator'
 *
 * C source code generated on: Fri Jun  8 13:31:21 2012
 *
 */

/* Include files */
#include "rt_nonfinite.h"
#include "position_estimator.h"

/* Type Definitions */

/* Named Constants */

/* Variable Declarations */

/* Variable Definitions */

/* Function Declarations */

/* Function Definitions */
void position_estimator(const real32_T u[2], const real32_T z[3], const real32_T
  xapo[6], const real32_T Papo[36], const real32_T gps_covariance[3], uint8_T
  predict_only, real32_T xapo1[6], real32_T Papo1[36])
{
  real32_T fv0[6];
  real32_T fv1[6];
  real32_T I[36];
  real32_T xapri[6];
  int32_T i;
  int32_T r1;
  static const real32_T fv2[36] = { 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.004F,
    1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F,
    0.004F, 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F, 0.0F, 0.0F,
    0.0F, 0.0F, 0.004F, 1.0F };

  static const real32_T fv3[12] = { 0.0F, 0.0F, 0.1744F, 87.2F, 0.0F, 0.0F,
    -0.1744F, -87.2F, 0.0F, 0.0F, 0.0F, 0.0F };

  int32_T r2;
  real32_T Papri[36];
  real32_T maxval;
  static const real32_T fv4[36] = { 1.0F, 0.004F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F,
    1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.004F, 0.0F, 0.0F, 0.0F,
    0.0F, 0.0F, 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.004F, 0.0F,
    0.0F, 0.0F, 0.0F, 0.0F, 1.0F };

  static const real32_T fv5[36] = { 1.0E-7F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F,
    1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0E-7F, 0.0F, 0.0F, 0.0F, 0.0F,
    0.0F, 0.0F, 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0E-7F, 0.0F, 0.0F,
    0.0F, 0.0F, 0.0F, 0.0F, 1.0F };

  real32_T K[18];
  static const int8_T iv0[18] = { 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
    0, 0 };

  real32_T fv6[9];
  static const int8_T iv1[18] = { 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
    1, 0 };

  real32_T b_gps_covariance[9];
  real32_T A[9];
  real32_T B[18];
  int32_T r3;
  real32_T a21;
  real32_T Y[18];
  real32_T b_z[3];
  int8_T b_I[36];

  /* if predit_onli == 1: no update step: use this when no new gps data is available */
  /* %initialization */
  /* use model F=m*a x''=F/m */
  /*  250Hz---> dT = 0.004s */
  /* u=[phi;theta] */
  /* x=[px;vx;py;vy]; */
  /* %------------------------------------------ */
  /* %------------------------------------------------ */
  /* R_t=[1,-r*dT,q*dT;r*dT,1,-p*dT;-q*dT,p*dT,1]; */
  /* process Covariance Matrix */
  /* measurement Covariance Matrix */
  /* %prediction */
  for (i = 0; i < 6; i++) {
    fv0[i] = 0.0F;
    for (r1 = 0; r1 < 6; r1++) {
      fv0[i] += fv2[i + 6 * r1] * xapo[r1];
    }

    fv1[i] = 0.0F;
    for (r1 = 0; r1 < 2; r1++) {
      fv1[i] += fv3[i + 6 * r1] * u[r1];
    }

    xapri[i] = fv0[i] + fv1[i];
    for (r1 = 0; r1 < 6; r1++) {
      I[i + 6 * r1] = 0.0F;
      for (r2 = 0; r2 < 6; r2++) {
        I[i + 6 * r1] += fv2[i + 6 * r2] * Papo[r2 + 6 * r1];
      }
    }
  }

  for (i = 0; i < 6; i++) {
    for (r1 = 0; r1 < 6; r1++) {
      maxval = 0.0F;
      for (r2 = 0; r2 < 6; r2++) {
        maxval += I[i + 6 * r2] * fv4[r2 + 6 * r1];
      }

      Papri[i + 6 * r1] = maxval + fv5[i + 6 * r1];
    }
  }

  if (1 != predict_only) {
    /* update */
    for (i = 0; i < 3; i++) {
      for (r1 = 0; r1 < 6; r1++) {
        K[i + 3 * r1] = 0.0F;
        for (r2 = 0; r2 < 6; r2++) {
          K[i + 3 * r1] += (real32_T)iv0[i + 3 * r2] * Papri[r2 + 6 * r1];
        }
      }
    }

    for (i = 0; i < 3; i++) {
      for (r1 = 0; r1 < 3; r1++) {
        fv6[i + 3 * r1] = 0.0F;
        for (r2 = 0; r2 < 6; r2++) {
          fv6[i + 3 * r1] += K[r1 + 3 * r2] * (real32_T)iv1[r2 + 6 * i];
        }
      }
    }

    b_gps_covariance[0] = gps_covariance[0];
    b_gps_covariance[1] = 0.0F;
    b_gps_covariance[2] = 0.0F;
    b_gps_covariance[3] = 0.0F;
    b_gps_covariance[4] = gps_covariance[1];
    b_gps_covariance[5] = 0.0F;
    b_gps_covariance[6] = 0.0F;
    b_gps_covariance[7] = 0.0F;
    b_gps_covariance[8] = gps_covariance[2];
    for (i = 0; i < 3; i++) {
      for (r1 = 0; r1 < 3; r1++) {
        A[r1 + 3 * i] = fv6[r1 + 3 * i] + b_gps_covariance[r1 + 3 * i];
      }

      for (r1 = 0; r1 < 6; r1++) {
        B[i + 3 * r1] = 0.0F;
        for (r2 = 0; r2 < 6; r2++) {
          B[i + 3 * r1] += Papri[r1 + 6 * r2] * (real32_T)iv1[r2 + 6 * i];
        }
      }
    }

    r1 = 0;
    r2 = 1;
    r3 = 2;
    maxval = (real32_T)fabs(A[0]);
    a21 = (real32_T)fabs(A[1]);
    if (a21 > maxval) {
      maxval = a21;
      r1 = 1;
      r2 = 0;
    }

    if ((real32_T)fabs(A[2]) > maxval) {
      r1 = 2;
      r2 = 1;
      r3 = 0;
    }

    A[r2] /= A[r1];
    A[r3] /= A[r1];
    A[3 + r2] -= A[r2] * A[3 + r1];
    A[3 + r3] -= A[r3] * A[3 + r1];
    A[6 + r2] -= A[r2] * A[6 + r1];
    A[6 + r3] -= A[r3] * A[6 + r1];
    if ((real32_T)fabs(A[3 + r3]) > (real32_T)fabs(A[3 + r2])) {
      i = r2;
      r2 = r3;
      r3 = i;
    }

    A[3 + r3] /= A[3 + r2];
    A[6 + r3] -= A[3 + r3] * A[6 + r2];
    for (i = 0; i < 6; i++) {
      Y[3 * i] = B[r1 + 3 * i];
      Y[1 + 3 * i] = B[r2 + 3 * i] - Y[3 * i] * A[r2];
      Y[2 + 3 * i] = (B[r3 + 3 * i] - Y[3 * i] * A[r3]) - Y[1 + 3 * i] * A[3 +
        r3];
      Y[2 + 3 * i] /= A[6 + r3];
      Y[3 * i] -= Y[2 + 3 * i] * A[6 + r1];
      Y[1 + 3 * i] -= Y[2 + 3 * i] * A[6 + r2];
      Y[1 + 3 * i] /= A[3 + r2];
      Y[3 * i] -= Y[1 + 3 * i] * A[3 + r1];
      Y[3 * i] /= A[r1];
    }

    for (i = 0; i < 3; i++) {
      for (r1 = 0; r1 < 6; r1++) {
        K[r1 + 6 * i] = Y[i + 3 * r1];
      }
    }

    for (i = 0; i < 3; i++) {
      maxval = 0.0F;
      for (r1 = 0; r1 < 6; r1++) {
        maxval += (real32_T)iv0[i + 3 * r1] * xapri[r1];
      }

      b_z[i] = z[i] - maxval;
    }

    for (i = 0; i < 6; i++) {
      maxval = 0.0F;
      for (r1 = 0; r1 < 3; r1++) {
        maxval += K[i + 6 * r1] * b_z[r1];
      }

      xapo1[i] = xapri[i] + maxval;
    }

    for (i = 0; i < 36; i++) {
      b_I[i] = 0;
    }

    for (i = 0; i < 6; i++) {
      b_I[i + 6 * i] = 1;
    }

    for (i = 0; i < 6; i++) {
      for (r1 = 0; r1 < 6; r1++) {
        maxval = 0.0F;
        for (r2 = 0; r2 < 3; r2++) {
          maxval += K[i + 6 * r2] * (real32_T)iv0[r2 + 3 * r1];
        }

        I[i + 6 * r1] = (real32_T)b_I[i + 6 * r1] - maxval;
      }
    }

    for (i = 0; i < 6; i++) {
      for (r1 = 0; r1 < 6; r1++) {
        Papo1[i + 6 * r1] = 0.0F;
        for (r2 = 0; r2 < 6; r2++) {
          Papo1[i + 6 * r1] += I[i + 6 * r2] * Papri[r2 + 6 * r1];
        }
      }
    }
  } else {
    memcpy((void *)&Papo1[0], (void *)&Papri[0], 36U * sizeof(real32_T));
    for (i = 0; i < 6; i++) {
      xapo1[i] = xapri[i];
    }
  }
}

/* End of code generation (position_estimator.c) */