aboutsummaryrefslogtreecommitdiff
path: root/src/modules/fw_att_control_vector/ecl_fw_att_control_vector.cpp
blob: 16e60f3e0b1ff8218adee044b4381651f18c3640 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/****************************************************************************
 *
 *   Copyright (c) 2013 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file ecl_fw_att_control_vector.cpp
 *
 * Fixed wing attitude controller
 *
 * @author Lorenz Meier <lm@inf.ethz.ch>
 * @author Tobias Naegeli <naegelit@student.ethz.ch>
 *
 */

#include <mathlib/mathlib.h>
#include <systemlib/geo/geo.h>
#include "ecl_fw_att_control_vector.h"

ECL_FWAttControlVector::ECL_FWAttControlVector() :
    _integral_error(0.0f, 0.0f),
    _integral_max(1000.0f, 1000.0f),
    _rates_demanded(0.0f, 0.0f, 0.0f),
    _k_p(1.0f, 1.0f, 1.0f),
    _k_d(1.0f, 1.0f, 1.0f),
    _k_i(1.0f, 1.0f, 1.0f),
    _integral_lock(false),
    _p_airspeed_min(12.0f),
    _p_airspeed_max(24.0f),
    _p_tconst(0.1f),
    _p_roll_ffd(1.0f),
    _airspeed_enabled(false)
    {

    }

/**
 *
 * @param F_des_in  Desired force vector in body frame (NED). Straight flight is (0 0 -1)',
 *                  banking hard right (1 0 -1)' and pitching down (1 0 -1)'.
 */
void ECL_FWAttControlVector::control(float dt, float airspeed, float airspeed_scaling, const math::Dcm &R_nb, float roll, float pitch, float yaw, const math::Vector &F_des_in,
                                const math::Vector &angular_rates,
                                math::Vector &moment_des, float &thrust)
{
    if (!isfinite(airspeed) || !airspeed_enabled()) {
        // If airspeed is not available or Inf/NaN, use the center
        // of min / max 
        airspeed = 0.5f * (_p_airspeed_min + _p_airspeed_max);
    }
     
    math::Dcm R_bn(R_nb.transpose());
    math::Matrix R_yaw_bn = math::Dcm(math::EulerAngles(0.0f, 0.0f, yaw)).transpose();

    // Establish actuator signs and lift compensation
    float lift_sign = (R_bn(3, 3) >= 0) ? 1.0f : -1.0f;

    float lift_comp = CONSTANTS_ONE_G / math::max(airspeed , float(_p_airspeed_min) * (R_nb(2,3) * R_nb(2,3)) / (R_nb(3,3) * sqrtf((R_nb(2,3) * R_nb(2,3)) + (R_nb(3,3) * R_nb(3,3)))));
    //float lift_comp = fabsf((CONSTANTS_ONE_G / math::max(airspeed , float(_p_airspeed_min)) * tanf(roll) * sinf(roll))) * _p_roll_ffd;
    
    float cy = cosf(yaw);
    float sy = sinf(yaw);
     
    //math::Matrix RYaw = math::Dcm(cy,-sy,0.0f,sy,cy,0.0f,0.0f,0.0f,1.0f);
    math::Vector z_b = math::Vector3(R_bn(0,2), R_bn(1,2), R_bn(2,2));

    math::Vector3 F_des = R_yaw_bn * F_des_in;
     
    // desired thrust in body frame
    // avoid division by zero
    // compensates for thrust loss due to roll/pitch
    if (F_des(2) >= 0.1f) {
        thrust = F_des(2) / R_bn(2, 2);
    } else {
        F_des(2) = 0.1f;
        thrust= F_des(2) / R_bn(2, 2);
    }

    math::Vector3 x_B_des;
    math::Vector3 y_B_des;
    math::Vector3 z_B_des;
     
    // desired body z axis
    z_B_des = (F_des / F_des.norm());

    // desired direction in world coordinates (yaw angle)
    math::Vector3 x_C(cy, sy, 0.0f);
    // desired body y axis
    y_B_des = z_B_des.cross(x_C) / (z_B_des.cross(x_C)).norm();
    // desired body x axis
    x_B_des = y_B_des.cross(z_B_des);
    // desired Rotation Matrix
    math::Dcm R_des(x_B_des(0), x_B_des(1), x_B_des(2),
                                   y_B_des(0), y_B_des(1), y_B_des(2),
                                   z_B_des(0), z_B_des(1), z_B_des(2));
     
     
    // Attitude Controller
    // P controller
     
    // error rotation matrix
    // operation executed in quaternion space to allow large differences
    // XXX switch between operations based on difference,
    // benchmark both options
    math::Quaternion e_q = math::Quaternion(R_des) - math::Quaternion(R_bn);
    // Renormalize
    e_q = e_q / e_q.norm();
    math::Matrix e_R = math::Dcm(e_q);
    //small angles: math::Matrix e_R = (R_des.transpose() * R_bn - R_bn.transpose() * R_des) * 0.5f;
     
    // error rotation vector
    math::Vector e_R_v(3);
    e_R_v(0) = e_R(1,2);
    e_R_v(1) = e_R(0,2);
    e_R_v(2) = e_R(0,1);
     
     
    // attitude integral error
    math::Vector intError = math::Vector3(0.0f, 0.0f, 0.0f);
    if (!_integral_lock) {

        if (fabsf(_integral_error(0)) < _integral_max(0)) {
            _integral_error(0) = _integral_error(0) + e_R_v(0) * dt;
        }

        if (fabsf(_integral_error(1)) < _integral_max(1)) {
            _integral_error(1) = _integral_error(1) + e_R_v(1) * dt;
        }
        
        intError(0) = _integral_error(0);
        intError(1) = _integral_error(1);
        intError(2) = 0.0f;
    }

    _rates_demanded = (e_R_v * _k_p(0) + angular_rates * _k_d(0) + intError * _k_i(0));
    moment_des = _rates_demanded;
}