summaryrefslogtreecommitdiff
path: root/nuttx/configs/stm32f100rc_generic/README.txt
diff options
context:
space:
mode:
Diffstat (limited to 'nuttx/configs/stm32f100rc_generic/README.txt')
-rw-r--r--nuttx/configs/stm32f100rc_generic/README.txt504
1 files changed, 504 insertions, 0 deletions
diff --git a/nuttx/configs/stm32f100rc_generic/README.txt b/nuttx/configs/stm32f100rc_generic/README.txt
new file mode 100644
index 000000000..e9959431c
--- /dev/null
+++ b/nuttx/configs/stm32f100rc_generic/README.txt
@@ -0,0 +1,504 @@
+README
+======
+
+This README discusses issues unique to NuttX configurations for the STMicro
+STM32F100RC generic board. This "generic" configuration is not very usable
+out-of-box, but can be used as a starting point to creating new configs with
+similar STM32 high-density value line chips. As a bare-minimum this config only
+specifies one LED (on PA0) and one button (on PA1), you should change that to
+match your hardware (some details below and in source files).
+
+Contents
+========
+
+ - Development Environment
+ - GNU Toolchain Options
+ - IDEs
+ - NuttX EABI "buildroot" Toolchain
+ - NuttX OABI "buildroot" Toolchain
+ - NXFLAT Toolchain
+ - LEDs
+ - UARTs
+ - "STMicro STM32F100RC generic" specific Configuration Options
+ - Configurations
+
+Development Environment
+=======================
+
+ Either Linux or Cygwin on Windows can be used for the development environment.
+ The source has been built only using the GNU toolchain (see below). Other
+ toolchains will likely cause problems.
+
+GNU Toolchain Options
+=====================
+
+ Toolchain Configurations
+ ------------------------
+ The NuttX make system has been modified to support the following different
+ toolchain options.
+
+ 1. The CodeSourcery GNU toolchain,
+ 2. The Atollic Toolchain,
+ 3. The devkitARM GNU toolchain,
+ 4. Raisonance GNU toolchain, or
+ 5. The NuttX buildroot Toolchain (see below).
+
+ All testing has been conducted using the CodeSourcery toolchain for Windows. To use
+ the Atollic, devkitARM, Raisonance GNU, or NuttX buildroot toolchain, you simply need to
+ add one of the following configuration options to your .config (or defconfig)
+ file:
+
+ CONFIG_STM32_CODESOURCERYW=y : CodeSourcery under Windows
+ CONFIG_STM32_CODESOURCERYL=y : CodeSourcery under Linux
+ CONFIG_STM32_ATOLLIC_LITE=y : The free, "Lite" version of Atollic toolchain under Windows
+ CONFIG_STM32_ATOLLIC_PRO=y : The paid, "Pro" version of Atollic toolchain under Windows
+ CONFIG_STM32_DEVKITARM=y : devkitARM under Windows
+ CONFIG_STM32_RAISONANCE=y : Raisonance RIDE7 under Windows
+ CONFIG_STM32_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
+
+ If you change the default toolchain, then you may also have to modify the PATH in
+ the setenv.sh file if your make cannot find the tools.
+
+ NOTE: the CodeSourcery (for Windows), Atollic, devkitARM, and Raisonance toolchains are
+ Windows native toolchains. The CodeSourcey (for Linux) and NuttX buildroot
+ toolchains are Cygwin and/or Linux native toolchains. There are several limitations
+ to using a Windows based toolchain in a Cygwin environment. The three biggest are:
+
+ 1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
+ performed automatically in the Cygwin makefiles using the 'cygpath' utility
+ but you might easily find some new path problems. If so, check out 'cygpath -w'
+
+ 2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
+ are used in Nuttx (e.g., include/arch). The make system works around these
+ problems for the Windows tools by copying directories instead of linking them.
+ But this can also cause some confusion for you: For example, you may edit
+ a file in a "linked" directory and find that your changes had no effect.
+ That is because you are building the copy of the file in the "fake" symbolic
+ directory. If you use a Windows toolchain, you should get in the habit of
+ making like this:
+
+ make clean_context all
+
+ An alias in your .bashrc file might make that less painful.
+
+ 3. Dependencies are not made when using Windows versions of the GCC. This is
+ because the dependencies are generated using Windows pathes which do not
+ work with the Cygwin make.
+
+ Support has been added for making dependencies with the windows-native toolchains.
+ That support can be enabled by modifying your Make.defs file as follows:
+
+ - MKDEP = $(TOPDIR)/tools/mknulldeps.sh
+ + MKDEP = $(TOPDIR)/tools/mkdeps.sh --winpaths "$(TOPDIR)"
+
+ If you have problems with the dependency build (for example, if you are not
+ building on C:), then you may need to modify tools/mkdeps.sh
+
+ The CodeSourcery Toolchain (2009q1)
+ -----------------------------------
+ The CodeSourcery toolchain (2009q1) does not work with default optimization
+ level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with
+ -Os.
+
+ The Atollic "Pro" and "Lite" Toolchain
+ --------------------------------------
+ One problem that I had with the Atollic toolchains is that the provide a gcc.exe
+ and g++.exe in the same bin/ file as their ARM binaries. If the Atollic bin/ path
+ appears in your PATH variable before /usr/bin, then you will get the wrong gcc
+ when you try to build host executables. This will cause to strange, uninterpretable
+ errors build some host binaries in tools/ when you first make.
+
+ The Atollic "Lite" Toolchain
+ ----------------------------
+ The free, "Lite" version of the Atollic toolchain does not support C++ nor
+ does it support ar, nm, objdump, or objdcopy. If you use the Atollic "Lite"
+ toolchain, you will have to set:
+
+ CONFIG_HAVE_CXX=n
+
+ In order to compile successfully. Otherwise, you will get errors like:
+
+ "C++ Compiler only available in TrueSTUDIO Professional"
+
+ The make may then fail in some of the post link processing because of some of
+ the other missing tools. The Make.defs file replaces the ar and nm with
+ the default system x86 tool versions and these seem to work okay. Disable all
+ of the following to avoid using objcopy:
+
+ CONFIG_RRLOAD_BINARY=n
+ CONFIG_INTELHEX_BINARY=n
+ CONFIG_MOTOROLA_SREC=n
+ CONFIG_RAW_BINARY=n
+
+ devkitARM
+ ---------
+ The devkitARM toolchain includes a version of MSYS make. Make sure that the
+ the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
+ path or will get the wrong version of make.
+
+IDEs
+====
+
+ NuttX is built using command-line make. It can be used with an IDE, but some
+ effort will be required to create the project.
+
+ Makefile Build
+ --------------
+ Under Eclipse, it is pretty easy to set up an "empty makefile project" and
+ simply use the NuttX makefile to build the system. That is almost for free
+ under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
+ makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
+ there is a lot of help on the internet).
+
+ Native Build
+ ------------
+ Here are a few tips before you start that effort:
+
+ 1) Select the toolchain that you will be using in your .config file
+ 2) Start the NuttX build at least one time from the Cygwin command line
+ before trying to create your project. This is necessary to create
+ certain auto-generated files and directories that will be needed.
+ 3) Set up include pathes: You will need include/, arch/arm/src/stm32,
+ arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
+ 4) All assembly files need to have the definition option -D __ASSEMBLY__
+ on the command line.
+
+ Startup files will probably cause you some headaches. The NuttX startup file
+ is arch/arm/src/stm32/stm32_vectors.S. With RIDE, I have to build NuttX
+ one time from the Cygwin command line in order to obtain the pre-built
+ startup object needed by RIDE.
+
+NuttX EABI "buildroot" Toolchain
+================================
+
+ A GNU GCC-based toolchain is assumed. The files */setenv.sh should
+ be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
+ different from the default in your PATH variable).
+
+ If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
+ SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/).
+ This GNU toolchain builds and executes in the Linux or Cygwin environment.
+
+ 1. You must have already configured Nuttx in <some-dir>/nuttx.
+
+ cd tools
+ ./configure.sh stm32f100rc_generic/<sub-dir>
+
+ 2. Download the latest buildroot package into <some-dir>
+
+ 3. unpack the buildroot tarball. The resulting directory may
+ have versioning information on it like buildroot-x.y.z. If so,
+ rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
+
+ 4. cd <some-dir>/buildroot
+
+ 5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config
+
+ 6. make oldconfig
+
+ 7. make
+
+ 8. Edit setenv.h, if necessary, so that the PATH variable includes
+ the path to the newly built binaries.
+
+ See the file configs/README.txt in the buildroot source tree. That has more
+ details PLUS some special instructions that you will need to follow if you are
+ building a Cortex-M3 toolchain for Cygwin under Windows.
+
+ NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
+ the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
+ more information about this problem. If you plan to use NXFLAT, please do not
+ use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
+ See instructions below.
+
+NuttX OABI "buildroot" Toolchain
+================================
+
+ The older, OABI buildroot toolchain is also available. To use the OABI
+ toolchain:
+
+ 1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
+ configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
+ configuration such as cortexm3-defconfig-4.3.3
+
+ 2. Modify the Make.defs file to use the OABI conventions:
+
+ +CROSSDEV = arm-nuttx-elf-
+ +ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
+ +NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
+ -CROSSDEV = arm-nuttx-eabi-
+ -ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
+ -NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections
+
+NXFLAT Toolchain
+================
+
+ If you are *not* using the NuttX buildroot toolchain and you want to use
+ the NXFLAT tools, then you will still have to build a portion of the buildroot
+ tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
+ be downloaded from the NuttX SourceForge download site
+ (https://sourceforge.net/projects/nuttx/files/).
+
+ This GNU toolchain builds and executes in the Linux or Cygwin environment.
+
+ 1. You must have already configured Nuttx in <some-dir>/nuttx.
+
+ cd tools
+ ./configure.sh lpcxpresso-lpc1768/<sub-dir>
+
+ 2. Download the latest buildroot package into <some-dir>
+
+ 3. unpack the buildroot tarball. The resulting directory may
+ have versioning information on it like buildroot-x.y.z. If so,
+ rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
+
+ 4. cd <some-dir>/buildroot
+
+ 5. cp configs/cortexm3-defconfig-nxflat .config
+
+ 6. make oldconfig
+
+ 7. make
+
+ 8. Edit setenv.h, if necessary, so that the PATH variable includes
+ the path to the newly builtNXFLAT binaries.
+
+LEDs
+====
+
+It is asumed that STMicro STM32F100RC generic board board has one LED on PA0.
+You should configure the port and pin number in
+configs/stm32f100rc_generic/src/stm32f100rc_internal.h. This LED is not used by
+the board port unless CONFIG_ARCH_LEDS is defined. In that case, the usage by
+the board port is defined in include/board.h and src/up_leds.c. The LED is used
+to encode OS-related events as follows:
+
+ SYMBOL Meaning LED1*
+ green
+ ------------------- ----------------------- -------
+ LED_STARTED NuttX has been started ON
+ LED_HEAPALLOCATE Heap has been allocated ON
+ LED_IRQSENABLED Interrupts enabled ON
+ LED_STACKCREATED Idle stack created ON
+ LED_INIRQ In an interrupt ON
+ LED_SIGNAL In a signal handler ON
+ LED_ASSERTION An assertion failed OFF
+ LED_PANIC The system has crashed OFF
+
+So basically if the LED is off it means that there is a problem.
+
+UART
+====
+
+Default USART/UART Configuration
+--------------------------------
+
+USART2 is enabled in all configurations (see */defconfig). RX and TX are
+configured on pins PA3 and PA2, respectively.
+
+"STMicro STM32F100RC generic" specific Configuration Options
+============================================================
+
+ CONFIG_ARCH - Identifies the arch/ subdirectory. This should
+ be set to:
+
+ CONFIG_ARCH=arm
+
+ CONFIG_ARCH_family - For use in C code:
+
+ CONFIG_ARCH_ARM=y
+
+ CONFIG_ARCH_architecture - For use in C code:
+
+ CONFIG_ARCH_CORTEXM3=y
+
+ CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
+
+ CONFIG_ARCH_CHIP=stm32
+
+ CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
+ chip:
+
+ CONFIG_ARCH_CHIP_STM32F100RC=y
+
+ CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG - Enables special STM32 clock
+ configuration features.
+
+ CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG=n
+
+ CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
+ hence, the board that supports the particular chip or SoC.
+
+ CONFIG_ARCH_BOARD=stm32f100rc_generic
+
+ CONFIG_ARCH_BOARD_name - For use in C code
+
+ CONFIG_ARCH_BOARD_STM32F100RC_GENERIC=y
+
+ CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
+ of delay loops
+
+ CONFIG_ENDIAN_BIG - define if big endian (default is little
+ endian)
+
+ CONFIG_DRAM_SIZE - Describes the installed DRAM (SRAM in this case):
+
+ CONFIG_DRAM_SIZE=24576 (24kB)
+
+ CONFIG_DRAM_START - The start address of installed DRAM
+
+ CONFIG_DRAM_START=0x20000000
+
+ CONFIG_ARCH_IRQPRIO - STM32F100RC chip supports interrupt prioritization
+
+ CONFIG_ARCH_IRQPRIO=y
+
+ CONFIG_ARCH_LEDS - Use LED to show state. Unique to boards that have LED(s)
+
+ CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
+ stack. If defined, this symbol is the size of the interrupt
+ stack in bytes. If not defined, the user task stacks will be
+ used during interrupt handling.
+
+ CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
+
+ CONFIG_ARCH_CALIBRATION - when used togeter with CONFIG_DEBUG enables some
+ build in instrumentation that cause a 100 second delay during boot-up.
+ This 100 second delay serves no purpose other than it allows you to
+ calibratre CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to
+ measure the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
+ the delay actually is 100 seconds.
+
+ Individual subsystems can be enabled:
+
+ AHB
+ ----
+ CONFIG_STM32_CRC
+ CONFIG_STM32_DMA1
+ CONFIG_STM32_DMA2
+
+ APB1
+ ----
+ CONFIG_STM32_TIM2
+ CONFIG_STM32_TIM3
+ CONFIG_STM32_TIM4
+ CONFIG_STM32_TIM5
+ CONFIG_STM32_TIM6
+ CONFIG_STM32_TIM7
+ CONFIG_STM32_TIM12
+ CONFIG_STM32_TIM13
+ CONFIG_STM32_TIM14
+ CONFIG_STM32_RTC
+ CONFIG_STM32_WWDG
+ CONFIG_STM32_IWDG
+ CONFIG_STM32_SPI2
+ CONFIG_STM32_SPI3
+ CONFIG_STM32_USART2
+ CONFIG_STM32_USART3
+ CONFIG_STM32_UART4
+ CONFIG_STM32_UART5
+ CONFIG_STM32_I2C1
+ CONFIG_STM32_I2C2
+ CONFIG_STM32_PWR -- Required for RTC
+ CONFIG_STM32_BKP -- Required for RTC
+ CONFIG_STM32_DAC1
+ CONFIG_STM32_DAC2
+ CONFIG_STM32_CEC
+
+ APB2
+ ----
+ CONFIG_STM32_ADC1
+ CONFIG_STM32_TIM1
+ CONFIG_STM32_SPI1
+ CONFIG_STM32_USART1
+ CONFIG_STM32_TIM15
+ CONFIG_STM32_TIM16
+ CONFIG_STM32_TIM17
+
+ Timer devices may be used for different purposes. One special purpose is
+ to generate modulated outputs for such things as motor control. If CONFIG_STM32_TIMn
+ is defined (as above) then the following may also be defined to indicate that
+ the timer is intended to be used for pulsed output modulation, ADC conversion,
+ or DAC conversion. Note that ADC/DAC require two definition: Not only do you have
+ to assign the timer (n) for used by the ADC or DAC, but then you also have to
+ configure which ADC or DAC (m) it is assigned to.
+
+ CONFIG_STM32_TIMn_PWM Reserve timer n for use by PWM, n=1,..,17
+ CONFIG_STM32_TIMn_ADC Reserve timer n for use by ADC, n=1,..,17
+ CONFIG_STM32_TIMn_ADC1 Reserve timer n to trigger ADCm, n=1,..,17
+ CONFIG_STM32_TIMn_DAC Reserve timer n for use by DAC, n=1,..,17
+ CONFIG_STM32_TIMn_DACm Reserve timer n to trigger DACm, n=1,..,17, m=1,..,2
+
+ For each timer that is enabled for PWM usage, we need the following additional
+ configuration settings:
+
+ CONFIG_STM32_TIMx_CHANNEL - Specifies the timer output channel {1,..,4}
+
+ NOTE: The STM32 timers are each capable of generating different signals on
+ each of the four channels with different duty cycles. That capability is
+ not supported by this driver: Only one output channel per timer.
+
+ JTAG Enable settings (by default full SWJ is enabled):
+
+ CONFIG_STM32_JTAG_FULL_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
+ CONFIG_STM32_JTAG_NOJNTRST_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
+ but without JNTRST.
+ CONFIG_STM32_JTAG_SW_ENABLE - Set JTAG-DP disabled and SW-DP enabled
+
+ STMicro STM32F100RC generic specific device driver settings
+
+ CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=1,2,3) or UART
+ m (m=4,5) for the console and ttys0 (default is the USART1).
+ CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
+ This specific the size of the receive buffer
+ CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
+ being sent. This specific the size of the transmit buffer
+ CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be
+ CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8.
+ CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
+ CONFIG_U[S]ARTn_2STOP - Two stop bits
+
+Configurations
+==============
+
+Each STMicro STM32F100RC generic configuration is maintained in a sudirectory
+and can be selected as follow:
+
+ cd tools
+ ./configure.sh stm32f100rc_generic/<subdir>
+ cd -
+ . ./setenv.sh
+
+Where <subdir> is one of the following:
+
+ ostest:
+ ------
+ This configuration directory, performs a simple OS test using
+ apps/examples/ostest.
+
+ NOTES:
+
+ 1. This configuration uses the mconf-based configuration tool. To
+ change this configuration using that tool, you should:
+
+ a. Build and install the mconf tool. See nuttx/README.txt and
+ misc/tools/
+
+ b. Execute 'make menuconfig' in nuttx/ in order to start the
+ reconfiguration process.
+
+ 2. Default toolchain:
+
+ CONFIG_STM32_CODESOURCERYL=y : CodeSourcery under Linux / Mac OS X
+
+ 3. By default, this project assumes that you are *NOT* using the DFU
+ bootloader.
+
+ nsh:
+ ---
+ Configures the NuttShell (nsh) located at apps/examples/nsh. The
+ Configuration enables only the serial NSH interfaces.
+
+ Default toolchain:
+
+ CONFIG_STM32_CODESOURCERYL=y : CodeSourcery under Linux / Mac OS X