aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/typer/Inferencing.scala
blob: a824e95e5ebe5100e41ca45fd13cfc2e7e6ec92e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
package dotty.tools
package dotc
package typer

import core._
import ast._
import Contexts._, Types._, Flags._, Denotations._, Names._, StdNames._, NameOps._, Symbols._
import Trees._
import annotation.unchecked
import util.Positions._
import util.{Stats, SimpleMap}
import Decorators._
import ErrorReporting.{errorType, InfoString}
import collection.mutable.ListBuffer

object Inferencing {

  import tpd._

  /** A trait defining an `isCompatible` method. */
  trait Compatibility {

    /** Is there an implicit conversion from `tp` to `pt`? */
    def viewExists(tp: Type, pt: Type)(implicit ctx: Context): Boolean

    /** A type `tp` is compatible with a type `pt` if one of the following holds:
     *    1. `tp` is a subtype of `pt`
     *    2. `pt` is by name parameter type, and `tp` is compatible with its underlying type
     *    3. there is an implicit conversion from `tp` to `pt`.
     */
    def isCompatible(tp: Type, pt: Type)(implicit ctx: Context): Boolean = {
      def skipByName(tp: Type): Type =
        if (tp isRef defn.ByNameParamClass) tp.typeArgs.head else tp
      skipByName(tp) <:< skipByName(pt) || viewExists(tp, pt)
    }
  }

  /** A prototype for expressions [] that are part of a selection operation:
   *
   *       [ ].name: proto
   */
  class SelectionProto(name: Name, proto: Type)
  extends RefinedType(WildcardType, name)(_ => proto) with ProtoType with Compatibility {
    override def viewExists(tp: Type, pt: Type)(implicit ctx: Context): Boolean = false
    override def isMatchedBy(tp1: Type)(implicit ctx: Context) = {
      def testCompatible(mbrType: Type)(implicit ctx: Context) =
        isCompatible(normalize(mbrType), proto)
      name == nme.WILDCARD || {
        val mbr = tp1.member(name)
        mbr.exists && mbr.hasAltWith(m => testCompatible(m.info)(ctx.fresh.withExploreTyperState))
      }
    }
    override def toString = "Proto" + super.toString
  }

  /** Create a selection proto-type, but only one level deep;
   *  treat constructors specially
   */
  def selectionProto(name: Name, tp: Type) =
    if (name.isConstructorName) WildcardType
    else {
      val rtp = tp match {
        case tp: ProtoType => WildcardType
        case _ => tp
      }
      new SelectionProto(name, rtp)
    }

  /** A prototype for expressions [] that are in some unspecified selection operation
   *
   *    [].?: ?
   *
   *  Used to indicate that expression is in a context where the only valid
   *  operation is further selection. In this case, the expression need not be a value.
   *  @see checkValue
   */
  object AnySelectionProto extends SelectionProto(nme.WILDCARD, WildcardType)

  /** A prototype for expressions that appear in function position
   *
   *  [](args): resultType
   */
  case class FunProto(args: List[untpd.Tree], override val resultType: Type, typer: Typer)(implicit ctx: Context)
  extends UncachedGroundType with ProtoType {
    private var myTypedArgs: List[Tree] = Nil

    /** A map in which typed arguments can be stored to be later integrated in `typedArgs`. */
    private var myTypedArg: SimpleMap[untpd.Tree, Tree] = SimpleMap.Empty

    def isMatchedBy(tp: Type)(implicit ctx: Context) =
      typer.isApplicable(tp, typedArgs, resultType)

    def argsAreTyped: Boolean = myTypedArgs.nonEmpty || args.isEmpty

    /** The typed arguments. This takes any arguments already typed using
     *  `typedArg` into account.
     */
    def typedArgs: List[Tree] = {
      if (!argsAreTyped)
        myTypedArgs = args mapconserve { arg =>
          val targ = myTypedArg(arg)
          if (targ != null) targ else typer.typed(arg)
        }
      myTypedArgs
    }

    /** Type single argument and remember the unadapted result in `myTypedArg`.
     *  used to avoid repreated typings of trees when backtracking.
     */
    def typedArg(arg: untpd.Tree, formal: Type)(implicit ctx: Context): Tree = {
      var targ = myTypedArg(arg)
      if (targ == null) {
        targ = typer.typedUnadapted(arg, formal)
        myTypedArg = myTypedArg.updated(arg, targ)
      }
      typer.adapt(targ, formal)
    }

    override def toString = s"FunProto(${args mkString ","} => $resultType)"
  }

  /** A prototype for implicitly inferred views:
   *
   *    []: argType => resultType
   */
  case class ViewProto(argType: Type, override val resultType: Type)(implicit ctx: Context)
  extends CachedGroundType with ProtoType {
    def isMatchedBy(tp: Type)(implicit ctx: Context) =
      ctx.typer.isApplicable(tp, argType :: Nil, resultType)
    override def namedPartsWith(p: NamedType => Boolean)(implicit ctx: Context): collection.Set[NamedType] =
      AndType(argType, resultType).namedPartsWith(p) // this is more efficient than oring two namedParts sets
    override def computeHash = doHash(argType, resultType)
  }

  /** A prototype for expressions [] that are type-parameterized:
   *
   *    [] [?_, ..., ?_nargs] resultType
   */
  case class PolyProto(nargs: Int, override val resultType: Type) extends UncachedGroundType

  /** A prototype for expressions [] that are known to be functions:
   *
   *    [] _
   */
  object AnyFunctionProto extends UncachedGroundType with ProtoType {
    def isMatchedBy(tp: Type)(implicit ctx: Context) = true
  }

  /** The normalized form of a type
   *   - unwraps polymorphic types, tracking their parameters in the current constraint
   *   - skips implicit parameters
   *   - converts non-dependent method types to the corresponding function types
   *   - dereferences parameterless method types
   */
  def normalize(tp: Type)(implicit ctx: Context): Type = Stats.track("normalize") {
    tp.widenSingleton match {
      case pt: PolyType => normalize(constrained(pt).resultType)
      case mt: MethodType if !mt.isDependent =>
        if (mt.isImplicit) mt.resultType
        else defn.FunctionType(mt.paramTypes, mt.resultType)
      case et: ExprType => et.resultType
      case _ => tp
    }
  }

  /** An enumeration controlling the degree of forcing in "is-dully-defined" checks. */
  object ForceDegree extends Enumeration {
    val none,           // don't force type variables
        noBottom,       // force type variables, fail if forced to Nothing or Null
        all = Value     // force type variables, don't fail
  }

  /** Is type fully defined, meaning the type does not contain wildcard types
   *  or uninstantiated type variables. As a side effect, this will minimize
   *  any uninstantiated type variables, according to the given force degree,
   *  but only if the overall result of `isFullyDefined` is `true`.
   *  Variables that are successfully minimized do not count as uninstantiated.
   */
  def isFullyDefined(tp: Type, force: ForceDegree.Value)(implicit ctx: Context): Boolean = {
    val nestedCtx = ctx.fresh.withNewTyperState
    val result = new IsFullyDefinedAccumulator(force)(nestedCtx).traverse(tp)
    if (result) nestedCtx.typerState.commit()
    result
  }

  /** The fully defined type, where all type variables are forced.
   *  Throws an error if type contains wildcards.
   */
  def fullyDefinedType(tp: Type, what: String, pos: Position)(implicit ctx: Context) =
    if (isFullyDefined(tp, ForceDegree.all)) tp
    else throw new Error(i"internal error: type of $what $tp is not fully defined, pos = $pos") // !!! DEBUG

  private class IsFullyDefinedAccumulator(force: ForceDegree.Value)(implicit ctx: Context) extends TypeAccumulator[Boolean] {
    def traverse(tp: Type): Boolean = apply(true, tp)
    def apply(x: Boolean, tp: Type) = !x || isOK(tp) && foldOver(x, tp)
    def isOK(tp: Type): Boolean = tp match {
      case _: WildcardType =>
        false
      case tvar: TypeVar if force != ForceDegree.none && !tvar.isInstantiated =>
        val inst = tvar.instantiate(fromBelow = true)
        println(i"forced instantiation of ${tvar.origin} = $inst")
        (force == ForceDegree.all || inst != defn.NothingType && inst != defn.NullType) && traverse(inst)
      case _ =>
        true
    }
  }

  /** Recursively and also follow type declarations and type aliases. */
  def widenForMatchSelector(tp: Type)(implicit ctx: Context): Type = tp.widen match {
    case tp: TypeRef if !tp.symbol.isClass => widenForMatchSelector(tp.bounds.hi)
    case tp => tp
  }

  /** Check that type arguments `args` conform to corresponding bounds in `poly` */
  def checkBounds(args: List[tpd.Tree], poly: PolyType, pos: Position)(implicit ctx: Context): Unit =
    for ((arg, bounds) <- args zip poly.paramBounds) {
      def notConforms(which: String, bound: Type) =
        ctx.error(i"Type argument ${arg.tpe} does not conform to $which bound $bound", arg.pos)
      if (!(arg.tpe <:< bounds.hi)) notConforms("upper", bounds.hi)
      if (!(bounds.lo <:< arg.tpe)) notConforms("lower", bounds.lo)
    }

  /** Check that type `tp` is stable.
   *  @return The type itself
   */
  def checkStable(tp: Type, pos: Position)(implicit ctx: Context): Type = {
    if (!tp.isStable) ctx.error(i"Prefix $tp is not stable", pos)
    tp
  }

  /** Check that `tp` is a class type with a stable prefix.
   *  @return  Underlying class symbol if type checks out OK, ObjectClass if not.
   */
  def checkClassTypeWithStablePrefix(tp: Type, pos: Position)(implicit ctx: Context): ClassSymbol = tp.dealias match {
    case tp: TypeRef if tp.symbol.isClass =>
      checkStable(tp.prefix, pos)
      tp.symbol.asClass
    case _: TypeVar | _: AnnotatedType =>
      checkClassTypeWithStablePrefix(tp.asInstanceOf[TypeProxy].underlying, pos)
    case _ =>
      ctx.error(i"$tp is not a class type", pos)
      defn.ObjectClass
  }

  def checkInstantiatable(cls: ClassSymbol, pos: Position): Unit = {
    ??? // to be done in later phase: check that class `cls` is legal in a new.
  }

  /** Add all parameters in given polytype `pt` to the constraint's domain.
   *  If the constraint contains already some of these parameters in its domain,
   *  make a copy of the polytype and add the copy's type parameters instead.
   *  Return either the original polytype, or the copy, if one was made.
   *  Also, if `owningTree` is non-empty, add a type variable for each parameter.
   *  @return  The added polytype, and the list of created type variables.
   */
  def constrained(pt: PolyType, owningTree: untpd.Tree)(implicit ctx: Context): (PolyType, List[TypeVar]) = {
    val state = ctx.typerState
    def howmany = if (owningTree.isEmpty) "no" else "some"
    def committable = if (ctx.typerState.isCommittable) "committable" else "uncommittable"
    assert(owningTree.isEmpty != ctx.typerState.isCommittable,
      s"inconsistent: $howmany typevars were added to $committable constraint ${state.constraint}")

    def newTypeVars(pt: PolyType): List[TypeVar] =
      for (n <- (0 until pt.paramNames.length).toList)
      yield new TypeVar(PolyParam(pt, n), state, owningTree)

    val added =
      if (state.constraint contains pt) pt.copy(pt.paramNames, pt.paramBounds, pt.resultType)
      else pt
    val tvars = if (owningTree.isEmpty) Nil else newTypeVars(added)
    state.constraint = state.constraint.add(added, tvars)
    (added, tvars)
  }

  /**  Same as `constrained(pt, EmptyTree)`, but returns just the created polytype */
  def constrained(pt: PolyType)(implicit ctx: Context): PolyType = constrained(pt, EmptyTree)._1

  /** Interpolate those undetermined type variables in the widened type of this tree
   *  which are introduced by type application contained in the tree.
   *  If such a variable appears covariantly in type `tp` or does not appear at all,
   *  approximate it by its lower bound. Otherwise, if it appears contravariantly
   *  in type `tp` approximate it by its upper bound.
   */
  def interpolateUndetVars(tree: Tree)(implicit ctx: Context): Unit = Stats.track("interpolateUndetVars") {
    val tp = tree.tpe.widen
    val constraint = ctx.typerState.constraint

    println(s"interpolate undet vars in ${tp.show}, pos = ${tree.pos}, mode = ${ctx.mode}, undets = ${constraint.uninstVars map (tvar => s"${tvar.show}@${tvar.owningTree.pos}")}")
    println(s"qualifying undet vars: ${constraint.uninstVars filter qualifies map (_.show)}")
    println(s"fulltype: $tp") // !!! DEBUG
    println(s"constraint: ${constraint.show}")

    def qualifies(tvar: TypeVar) = tree contains tvar.owningTree
    val vs = tp.variances(tvar => (constraint contains tvar) && qualifies(tvar))
    println(s"variances = $vs")
    var changed = false
    vs foreachBinding { (tvar, v) =>
      if (v != 0) {
        println(s"interpolate ${if (v == 1) "co" else "contra"}variant ${tvar.show} in ${tp.show}")
        tvar.instantiate(fromBelow = v == 1)
        changed = true
      }
    }
    if (changed) // instantiations might have uncovered new typevars to interpolate
      interpolateUndetVars(tree)
    else
      constraint.foreachUninstVar { tvar =>
        if (!(vs contains tvar) && qualifies(tvar)) {
          println(s"instantiating non-occurring $tvar in $tp")
          tvar.instantiate(fromBelow = true)
        }
      }
  }

  /** Instantiate undetermined type variables to that type `tp` is
   *  maximized and return None. If this is not possible, because a non-variant
   *  typevar is not uniquely determined, return that typevar in a Some.
   */
  def maximizeType(tp: Type)(implicit ctx: Context): Option[TypeVar] = Stats.track("maximizeType") {
    val constraint = ctx.typerState.constraint
    val vs = tp.variances(constraint contains _)
    var result: Option[TypeVar] = None
    vs foreachBinding { (tvar, v) =>
      if (v == 1) tvar.instantiate(fromBelow = false)
      else if (v == -1) tvar.instantiate(fromBelow = true)
      else {
        val bounds = ctx.typerState.constraint.bounds(tvar.origin)
        if (!(bounds.hi <:< bounds.lo)) result = Some(tvar)
        tvar.instantiate(fromBelow = false)
      }
    }
    result
  }
}

/* not needed right now

  def isSubTypes(actuals: List[Type], formals: List[Type])(implicit ctx: Context): Boolean = formals match {
    case formal :: formals1 =>
      actuals match {
        case actual :: actuals1 => actual <:< formal && isSubTypes(actuals1, formals1)
        case _ => false
      }
    case nil =>
      actuals.isEmpty
  }

    def formalParameters[T](mtp: MethodType, actuals: List[T])(isRepeated: T => Boolean)(implicit ctx: Context) =
      if (mtp.isVarArgs && !(actuals.nonEmpty && isRepeated(actuals.last))) {
        val leading = mtp.paramTypes.init
        val repeated = mtp.paramTypes.last.typeArgs.head
        val trailing = List.fill(actuals.length - leading.length)(repeated)
        leading ++ trailing
      }
      else mtp.paramTypes
  */