aboutsummaryrefslogtreecommitdiff
path: root/src/modules/fw_att_control/fw_att_control_base.cpp
blob: f543c02f9cdc0d943456c00cc73b97521671ed08 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/* Copyright (c) 2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
		* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
		* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/

/**
 * @file mc_att_control_base.cpp
 *
 * @author Roman Bapst <bapstr@ethz.ch>
 *
 */

#include "fw_att_control_base.h"
#include <math.h>
#include <mathlib/mathlib.h>
#include <drivers/drv_hrt.h>

using namespace std;

FixedwingAttitudeControlBase::FixedwingAttitudeControlBase() :

		_task_should_exit(false), _task_running(false), _control_task(-1),

		/* performance counters */
		_loop_perf(perf_alloc(PC_ELAPSED, "fw att control")), _nonfinite_input_perf(
				perf_alloc(PC_COUNT, "fw att control nonfinite input")), _nonfinite_output_perf(
				perf_alloc(PC_COUNT, "fw att control nonfinite output")),
		/* states */
		_setpoint_valid(false), _debug(false) {
	/* safely initialize structs */
	_att = {};
	_att_sp = {};
	_manual = {};
	_airspeed = {};
	_vcontrol_mode = {};
	_actuators = {};
	_actuators_airframe = {};
	_global_pos = {};
	_vehicle_status = {};

}

FixedwingAttitudeControlBase::~FixedwingAttitudeControlBase() {

}

void FixedwingAttitudeControlBase::control_attitude() {
	bool lock_integrator = false;
	static int loop_counter = 0;
	/* scale around tuning airspeed */

	float airspeed;

	/* if airspeed is not updating, we assume the normal average speed */
	if (bool nonfinite = !isfinite(_airspeed.true_airspeed_m_s)
			|| hrt_elapsed_time(&_airspeed.timestamp) > 1e6) {
		airspeed = _parameters.airspeed_trim;
		if (nonfinite) {
			perf_count(_nonfinite_input_perf);
		}
	} else {
		/* prevent numerical drama by requiring 0.5 m/s minimal speed */
		airspeed = math::max(0.5f, _airspeed.true_airspeed_m_s);
	}

	/*
	 * For scaling our actuators using anything less than the min (close to stall)
	 * speed doesn't make any sense - its the strongest reasonable deflection we
	 * want to do in flight and its the baseline a human pilot would choose.
	 *
	 * Forcing the scaling to this value allows reasonable handheld tests.
	 */

	float airspeed_scaling = _parameters.airspeed_trim
			/ ((airspeed < _parameters.airspeed_min) ?
					_parameters.airspeed_min : airspeed);

	float roll_sp = _parameters.rollsp_offset_rad;
	float pitch_sp = _parameters.pitchsp_offset_rad;
	float throttle_sp = 0.0f;

	if (_vcontrol_mode.flag_control_velocity_enabled
			|| _vcontrol_mode.flag_control_position_enabled) {
		/* read in attitude setpoint from attitude setpoint uorb topic */
		roll_sp = _att_sp.roll_body + _parameters.rollsp_offset_rad;
		pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad;
		throttle_sp = _att_sp.thrust;

		/* reset integrals where needed */
		if (_att_sp.roll_reset_integral) {
			_roll_ctrl.reset_integrator();
		}
		if (_att_sp.pitch_reset_integral) {
			_pitch_ctrl.reset_integrator();
		}
		if (_att_sp.yaw_reset_integral) {
			_yaw_ctrl.reset_integrator();
		}
	} else {
		/*
		 * Scale down roll and pitch as the setpoints are radians
		 * and a typical remote can only do around 45 degrees, the mapping is
		 * -1..+1 to -man_roll_max rad..+man_roll_max rad (equivalent for pitch)
		 *
		 * With this mapping the stick angle is a 1:1 representation of
		 * the commanded attitude.
		 *
		 * The trim gets subtracted here from the manual setpoint to get
		 * the intended attitude setpoint. Later, after the rate control step the
		 * trim is added again to the control signal.
		 */
		roll_sp = (_manual.y * _parameters.man_roll_max - _parameters.trim_roll)
				+ _parameters.rollsp_offset_rad;
		pitch_sp = -(_manual.x * _parameters.man_pitch_max
				- _parameters.trim_pitch) + _parameters.pitchsp_offset_rad;
		throttle_sp = _manual.z;
		_actuators.control[4] = _manual.flaps;

		/*
		 * in manual mode no external source should / does emit attitude setpoints.
		 * emit the manual setpoint here to allow attitude controller tuning
		 * in attitude control mode.
		 */
		struct vehicle_attitude_setpoint_s att_sp;
		att_sp.timestamp = hrt_absolute_time();
		att_sp.roll_body = roll_sp;
		att_sp.pitch_body = pitch_sp;
		att_sp.yaw_body = 0.0f - _parameters.trim_yaw;
		att_sp.thrust = throttle_sp;

	}

	/* If the aircraft is on ground reset the integrators */
	if (_vehicle_status.condition_landed) {
		_roll_ctrl.reset_integrator();
		_pitch_ctrl.reset_integrator();
		_yaw_ctrl.reset_integrator();
	}

	/* Prepare speed_body_u and speed_body_w */
	float speed_body_u = 0.0f;
	float speed_body_v = 0.0f;
	float speed_body_w = 0.0f;
	if (_att.R_valid) {
		speed_body_u = _att.R[0][0] * _global_pos.vel_n
				+ _att.R[1][0] * _global_pos.vel_e
				+ _att.R[2][0] * _global_pos.vel_d;
		speed_body_v = _att.R[0][1] * _global_pos.vel_n
				+ _att.R[1][1] * _global_pos.vel_e
				+ _att.R[2][1] * _global_pos.vel_d;
		speed_body_w = _att.R[0][2] * _global_pos.vel_n
				+ _att.R[1][2] * _global_pos.vel_e
				+ _att.R[2][2] * _global_pos.vel_d;
	} else {
		if (_debug && loop_counter % 10 == 0) {
			warnx("Did not get a valid R\n");
		}
	}

	/* Run attitude controllers */
	if (isfinite(roll_sp) && isfinite(pitch_sp)) {
		_roll_ctrl.control_attitude(roll_sp, _att.roll);
		_pitch_ctrl.control_attitude(pitch_sp, _att.roll, _att.pitch, airspeed);
		_yaw_ctrl.control_attitude(_att.roll, _att.pitch, speed_body_u,
				speed_body_v, speed_body_w, _roll_ctrl.get_desired_rate(),
				_pitch_ctrl.get_desired_rate()); //runs last, because is depending on output of roll and pitch attitude

		/* Run attitude RATE controllers which need the desired attitudes from above, add trim */
		float roll_u = _roll_ctrl.control_bodyrate(_att.pitch, _att.rollspeed,
				_att.yawspeed, _yaw_ctrl.get_desired_rate(),
				_parameters.airspeed_min, _parameters.airspeed_max, airspeed,
				airspeed_scaling, lock_integrator);
		_actuators.control[0] =
				(isfinite(roll_u)) ?
						roll_u + _parameters.trim_roll : _parameters.trim_roll;
		if (!isfinite(roll_u)) {
			_roll_ctrl.reset_integrator();
			perf_count(_nonfinite_output_perf);

			if (_debug && loop_counter % 10 == 0) {
				warnx("roll_u %.4f", (double) roll_u);
			}
		}

		float pitch_u = _pitch_ctrl.control_bodyrate(_att.roll, _att.pitch,
				_att.pitchspeed, _att.yawspeed, _yaw_ctrl.get_desired_rate(),
				_parameters.airspeed_min, _parameters.airspeed_max, airspeed,
				airspeed_scaling, lock_integrator);
		_actuators.control[1] =
				(isfinite(pitch_u)) ?
						pitch_u + _parameters.trim_pitch :
						_parameters.trim_pitch;
		if (!isfinite(pitch_u)) {
			_pitch_ctrl.reset_integrator();
			perf_count(_nonfinite_output_perf);
			if (_debug && loop_counter % 10 == 0) {
				warnx("pitch_u %.4f, _yaw_ctrl.get_desired_rate() %.4f,"
						" airspeed %.4f, airspeed_scaling %.4f,"
						" roll_sp %.4f, pitch_sp %.4f,"
						" _roll_ctrl.get_desired_rate() %.4f,"
						" _pitch_ctrl.get_desired_rate() %.4f"
						" att_sp.roll_body %.4f", (double) pitch_u,
						(double) _yaw_ctrl.get_desired_rate(),
						(double) airspeed, (double) airspeed_scaling,
						(double) roll_sp, (double) pitch_sp,
						(double) _roll_ctrl.get_desired_rate(),
						(double) _pitch_ctrl.get_desired_rate(),
						(double) _att_sp.roll_body);
			}
		}

		float yaw_u = _yaw_ctrl.control_bodyrate(_att.roll, _att.pitch,
				_att.pitchspeed, _att.yawspeed, _pitch_ctrl.get_desired_rate(),
				_parameters.airspeed_min, _parameters.airspeed_max, airspeed,
				airspeed_scaling, lock_integrator);
		_actuators.control[2] =
				(isfinite(yaw_u)) ?
						yaw_u + _parameters.trim_yaw : _parameters.trim_yaw;
		if (!isfinite(yaw_u)) {
			_yaw_ctrl.reset_integrator();
			perf_count(_nonfinite_output_perf);
			if (_debug && loop_counter % 10 == 0) {
				warnx("yaw_u %.4f", (double) yaw_u);
			}
		}

		/* throttle passed through */
		_actuators.control[3] = (isfinite(throttle_sp)) ? throttle_sp : 0.0f;
		if (!isfinite(throttle_sp)) {
			if (_debug && loop_counter % 10 == 0) {
				warnx("throttle_sp %.4f", (double) throttle_sp);
			}
		}
	} else {
		perf_count(_nonfinite_input_perf);
		if (_debug && loop_counter % 10 == 0) {
			warnx("Non-finite setpoint roll_sp: %.4f, pitch_sp %.4f",
					(double) roll_sp, (double) pitch_sp);
		}
	}

}

void FixedwingAttitudeControlBase::set_attitude(const Eigen::Quaternion<double> attitude) {
	// watch out, still need to see where we modify attitude for the tailsitter case
	math::Quaternion quat;
	quat(0) = (float)attitude.w();
	quat(1) = (float)attitude.x();
	quat(2) = (float)attitude.y();
	quat(3) = (float)attitude.z();

	_att.q[0] = quat(0);
	_att.q[1] = quat(1);
	_att.q[2] = quat(2);
	_att.q[3] = quat(3);

	math::Matrix<3,3> Rot = quat.to_dcm();
	_att.R[0][0] = Rot(0,0);
	_att.R[1][0] = Rot(1,0);
	_att.R[2][0] = Rot(2,0);
	_att.R[0][1] = Rot(0,1);
	_att.R[1][1] = Rot(1,1);
	_att.R[2][1] = Rot(2,1);
	_att.R[0][2] = Rot(0,2);
	_att.R[1][2] = Rot(1,2);
	_att.R[2][2] = Rot(2,2);

	_att.R_valid = true;
}
void FixedwingAttitudeControlBase::set_attitude_rates(const Eigen::Vector3d& angular_rate) {
	_att.rollspeed  = angular_rate(0);
	_att.pitchspeed = angular_rate(1);
	_att.yawspeed   = angular_rate(2);
}
void FixedwingAttitudeControlBase::set_attitude_reference(const Eigen::Vector4d& control_attitude_thrust_reference) {
	_att_sp.roll_body  = control_attitude_thrust_reference(0);
	_att_sp.pitch_body = control_attitude_thrust_reference(1);
	_att_sp.yaw_body   = control_attitude_thrust_reference(2);
	_att_sp.thrust     = (control_attitude_thrust_reference(3) -30)*(-1)/30;

	// setup rotation matrix
	math::Matrix<3,3> Rot_sp;
	Rot_sp.from_euler(_att_sp.roll_body,_att_sp.pitch_body,_att_sp.yaw_body);
	_att_sp.R_body[0][0] = Rot_sp(0,0);
	_att_sp.R_body[1][0] = Rot_sp(1,0);
	_att_sp.R_body[2][0] = Rot_sp(2,0);
	_att_sp.R_body[0][1] = Rot_sp(0,1);
	_att_sp.R_body[1][1] = Rot_sp(1,1);
	_att_sp.R_body[2][1] = Rot_sp(2,1);
	_att_sp.R_body[0][2] = Rot_sp(0,2);
	_att_sp.R_body[1][2] = Rot_sp(1,2);
	_att_sp.R_body[2][2] = Rot_sp(2,2);
}
void FixedwingAttitudeControlBase::get_mixer_input(Eigen::Vector4d& motor_inputs) {
	motor_inputs(0) = _actuators.control[0];
	motor_inputs(1) = _actuators.control[1];
	motor_inputs(2) = _actuators.control[2];
	motor_inputs(3) = _actuators.control[3];
}